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StackGhost at a Glance

• StackGhost can hinder exploits by protecting
an application’s saved return pointer on the
stack

• StackGhost is automatic and transparent to
ALL processes on the system

• StackGhost imposes less than a 1%
performance penalty

• StackGhost is not another non-executable
stack
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Presentation Organization

1. Conventional function calls

2. Sparc function calls

3. StackGhost implementation

4. Performance

5. Limitations

6. Conclusion
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Conventional Function Calls

1. Save registers before a function call

2. Save return pointer before a function call

3. Perform function CALL (or SYSCALL)

4. Restore saved registers after return

Saves and Restores result in slow memory accesses
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Sparc function calls

Functions save the registers of its caller and
restore them before returning via instructions:

• SAVE all of the registers

• RESTORE all of the registers
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Sparc’s little kicker

• Defers using the stack in memory or cache
• Allocates a fresh set of private registers for

each function call
• Leave previous functions’ registers intact
• To return, re-activate the last set of registers

Each set of registers is called a “window”
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Register Windows

• The processor obviously does not have a
limitless number of “register windows”
available to allocate from. (Actually 6 or 7)

• In a deeply nested calling sequence, all the
registers will be exhausted and some must be
reclaimed.
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Register Reclaimation

1. The processor initiates a trap into the kernel.

2. The kernel saves the oldest register window
into the userland stack.

The kernel writes userland registers (includ-

ing the return pointer) to the stack.
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Register Retrieval

When RESTOREing registers, the processor
will have to retrieve the window if the window was
stored to the stack.

1. The processor initiates a trap into the kernel.

2. The kernel retrieves the register window out
of the userland stack into the registers.

The kernel loads userland registers (including

the return pointer) from the stack.
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StackGhost

• An addition to the kernel register window
SAVE and RESTORE trap handlers

• Automatically operates on return pointers
before they are written to the stack

• Automatically operates on return pointers
before they are popped off the stack
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StackGhost Protection Methods

XOR Cookie

1. XOR a cookie into the process return pointers
before they are stored to the stack.

2. XOR a cookie out of the process return
pointers before they are loaded from the
stack.
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XOR Cookie Effects

How a XOR cookie inhibits exploits:
• Attacker cannot predict how the XOR cookie

will affect the corrupted return pointer
• Steal the unused bits in the stored return

pointer to carry a canary
• If the canary was corrupted, the window

retrieval can abort
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Per-Kernel XOR Cookie

First StackGhost incarnation:
• 13-bit sign extended XOR cookie.
• Includes 2 bits of canary.
• Cookie constant across every process.
• Costs 2 instruction per function call.

Will not stop a fully caffeinated attacker.

StackGhostHardware Facilitated Stack Protection – p.13/22



Per-Process XOR Cookie

Next Incarnation:
• 32-bit XOR cookie including 2 canary bits
• Cookie randomly generated per process.
• Cookie saved in 32-bit member of PCB.
• Costs 8 instruction per function call.

Will cause an exploit to branch to a random ad-

dress; thus not work.
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Return-Address Stack

The future:

• Keep return addresses in a stack inaccessible
to processes.

• Place a unique random number where the
return address normally goes in the user
stack

• Stash the random number with the real return
address
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Return-Address Stack

During register window retrieval:
• Abort the process if the random number on

the stack does not match the private copy
• Restore the return address from the private

stack
• Restore the rest of the window like normal.

** This has not yet been implemented **
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Method comparison

Chances that StackGhost will not explicitly detect
a corrupt return pointer:

• Return-Address Stack: 1 in 232.
• XOR Cookie: 1 in 3

An exploit still may be foiled without explicit
detection.
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Micro Benchmarks

Base Per Per Return
Kernel Process Address

Stack
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4.743

5.57

6.502 6.586

Absolute worst case overhead:
Per-Kernel Cookie 17.44%
Per-Process Cookie 37.09%
Return-Address Stack 38.86% (approx)
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SPECint95 Benchmarks

Ratio to SPEC95 Base Platform
0.5 0.7 0.9 1.1 1.3 1.5

go

m88ksim

gcc

compress

li

ijpeg

perl

vortex

SPECint95
base

per-kernel

per-process

% Overhead SpecRatio
Stock OpenBSD —- 0.897
Per-Kernel 0.1% 0.896
Per-Process 0.4% 0.893
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StackGhost Limitations

• XOR Cookie’s cause unpredictable execution.
• Rootshell vs. DoS.
• Forked processes have identical Per-Process

XOR Cookies. A new cookie is created during
an execve().

• Debuggers are currently broken.
• No protection granularity. Protects all

processes.
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Conclusion

• StackGhost can transparently inhibit
conventional attacks that overwrite the saved
return address

• StackGhost cannot inhibit attacks that modify
data, overwrite a function pointer etc.

• StackGhost is NOT a panacea. Correcting the
bugs is better than depending on a crutch.
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