
XACML Function Annotations

Prathima Rao Dan Lin Elisa Bertino

Department of Computer Science
Purdue University

{prao,lindan,bertino}@cs.purdue.edu

Abstract

XACML is being increasingly adopted in large
enterprise systems for specifying access control poli-
cies. However, the efficient analysis and integra-
tion of multiple policies in such large distributed
systems still remains a difficult task. In this pa-
per, we propose an annotation technique which is a
simple extension to XACML, and may greatly ben-
efit the policy analysis process. We also discuss an
important consistency problem during XACML pol-
icy translation and point out a few possible research
directions.

1 Introduction

XACML (Extensible Access Control Markup
Language) [6] is the current OASIS standard for
specifying access control policies in large enter-
prise systems. As XACML is being increasingly
adopted [7] in large distributed systems with mul-
tiple autonomous parties, it is very important that
properties like similarity and consistency be verified
in order to enable efficient integration and man-
agement of policies in such systems. In order to
address such requirement, various policy analysis
techniques have been proposed [1, 3, 5].

Current policy analysis techniques rely on ana-
lyzing Boolean formulae representing the XACML
policies. To derive these formulae, the analysis tool
needs to be aware of the behavioral semantics of
functions used in the Condition element of XACML
policies. For standard XACML functions with fixed
semantics, a translation has to be carried out by an
expert who has to manually map each function to
a Boolean predicate. In addition, XACML allows
users to define their own extension functions. Ex-
isting translation techniques will handle these new
functions simply as uninterpreted symbols. Such
limitation severely hinders the quality of the anal-

ysis. Without knowing the exact semantics of the
newly defined functions, the analysis is restricted
to the very general assumption that two functions
are treated equal if they have the same number and
data types of input parameters. Therefore, it is cru-
cial that users also be able to specify a semantics
for new functions they define. In addition, explicit
semantics for standard XACML functions will ob-
viate the necessary manual translation. For this
purpose, we need a technique to convey the func-
tion semantics explicitly. Motivated by such need,
we propose an annotation language to explicitly
and succinctly represent the behavior or semantics
of both standard and extension XACML functions.
To the best of our knowledge, there is no other for-
mal annotation language defined for functions in
XACML policies. There are many advantages of
such annotations. First, automatic translation can
be achieved by parsing these user-specified anno-
tations. Second, the annotations can help system
managers to easily understand each policy. Third,
the annotations can help in analyzing policy prop-
erties. Finally, comparisons among simple policies
may be performed directly by comparing their an-
notations.

Another important issue we need to address with
regard to such annotations is how to ascertain the
validity of the function annotations provided by the
user, since incorrect semantic annotations may lead
to incorrect analysis results. For example, policy P1

specifies its condition by a user-defined function f1

which compares the absolute values of two input
parameters. If the user who defined the f1 made a
mistake or maliciously wrote the semantics as com-
paring the exact values of two input parameters,
the translation will be wrong, and consequently
the policy analysis based on this translation will be
meaningless. Such issue does not arise in standard
XACML functions since their semantics is defined
by XACML. For the user-defined functions, veri-

1

<?xml version="1.0" encoding="UTF-8"?>
<Policy PolicyId="Bill-Policy" RuleCombiningAlgId="permit-overrides">
<Rule RuleId="Rule01" Effect="Permit">
<Condition>
<Apply FunctionId="xacml:1.0:function:string-at-least-one-member-of">

<SubjectAttributeDesignator AttributeId="E-Mail" Datatype="#string"/>
<Apply FunctionId="xacml:1.0:function:string-bag">

<AttributeValue Datatype="#string">.gov</AttributeValue>
<AttributeValue Datatype="#string">.edu</AttributeValue>

</Apply>
</Apply>

</Condition> </Rule> </Policy>

fication is however important. Therefore, we pro-
pose the inclusion of a verification module which
checks the consistency between annotations and
function implementation. The verification mod-
ule involves computationally intensive tasks such
as proof checking, which may affect the overall re-
sponsiveness of the system. However, this is just a
one time cost incurred initially when the users reg-
ister their functions and annotations in the function
repository of our system.

The rest of the paper is organized as follows.
Section 2 presents an overview of XACML. Sec-
tion 3 presents our proposed annotation syntax,
and Section 4 introduces an annotation framework.
Finally, Section 5 concludes the paper.

2 XACML

XACML [6] is the OASIS standard language for
access control policies. It is written in XML which
has the widespread support from the main plat-
form and tool vendors. The main elements of an
XACML policy are a Target, a Rule set and a rule
combining algorithm (for conflict resolution). The
Target specifies some restrictions on the subject, re-
source, action, environment attributes in a request,
that must hold in order for the policy to be ap-
plicable to that request. A Rule element is in turn
composed of Target, Condition and Effect elements.

A Condition element specifies additional restric-
tions on request attribute values that must be sat-
isfied in order to yield a Permit or Deny deci-
sion as specified by the Effect element. These re-
strictions are represented in the form of Boolean
functions over subject, resource, action, environ-
ment attributes or functions of attributes. In ef-
fect, conditions represent Boolean predicates over
attributes. Thus, most policy analysis tools model

XACML policies as Boolean formulae. Property
verification is then formulated as a satisfiability
problem on these formulae. An example of a
XACML policy is shown in Figure 1. The Boolean
formula for this policy is (E−Mail == “.gov”) or
(E−Mail == “.edu”).

3 Annotation Syntax

In this section, we present the annotation syn-
tax for function specifications. As we mentioned,
functions in XACML policies can be translated into
Boolean formulae. Our annotation syntax can ex-
press any Boolean expression of the form e1 � e2 �
e3....., where e1, e2, e3... are Boolean predicates in-
volving comparison of various XACML datatypes,
and � represents the operators or/and. We design
the following seven elements which are aimed to
represent all types of Boolean functions.

• 〈Annotation〉 〈/Annotation〉 : The Annotation
element marks the begin and end of an anno-
tation. It contains an attribute called “An-
notationId”, which indicates the correspond-
ing function that this annotation explains.
This “AnnotationId” is exactly the same as
the “FunctionId” so that automatic transla-
tion can easily associate the annotation with
its function.

• 〈Operand 〉 〈/Operand 〉: The Operand ele-
ment is an input parameter of a function. It
has two attributes: “DataType” and “value”.
The “DataType” indicates the data type of the
input parameter. The “value” will be substi-
tuted with specific input value when the func-
tion is called by a policy.

• 〈Uni−Operator〉 〈/Uni−Operator〉: The Uni-
Operator element denotes any unary operator
like +,−, not.

2

<Annotation AnnotationId=
“string-at-least-one-member-of”>

<Bi-Term>
<Operand Datatype= “#string-bag”

value= “&Param 1”/ >
<Bi-Operator> belongs-to < /Bi-Operator>
<Operand Datatype=“#string-bag”

value= “&Param 2”/ >
< /Bi-Term>
<Boolean-Form>
< /Boolean-Form>
< /Annotation>

<Annotation AnnotationId=
“string-at-least-one-member-of”>

<Bi-Term>
<Operand Datatype= “#string-bag”

value={“E-Mail”}/ >
<Bi-Operator> belongs-to < /Bi-Operator>
<Operand Datatype=“#string-bag”

value= {“.gov”, “.edu”} / >
< /Bi-Term>
<Boolean-Form>

(E−Mail == “.gov”) or
(E−Mail == “.edu”)

< /Boolean-Form>
< /Annotation>

(a) (b)

• 〈Bi−Operator〉 〈/Bi−Operator〉 : The Bi-
Operator element denotes a binary operator.
The binary operator could be any one of the
arithmetic operators like +,−, ∗, /,%, logical
operators like or, and, comparison operators
like ==,≤, <,≥, >, or set operators like inter-
sect, belongsto, union, subset, setequal.

• 〈Uni-Term〉 〈/Uni−Term〉 : The Uni-Term
element denotes a term with one operand.
It contains a 〈Uni−Operator〉 followed by an
〈Operand〉 element.

• 〈Bi-Term〉 〈/Bi−Term〉 : The Bi-Term ele-
ment denotes a term with two operands con-
nected by a binary operator. Accordingly,
it contains two 〈Operand〉 elements with a
<Bi−Operator> element in between.

• 〈Boolean-Form〉 〈/Boolean-Form〉: The
Boolean-Form element contains a Boolean for-
mula with respect to the function annotated.
This part is automatically generated by our
annotation system.

Figure 2 illustrates an example of the proposed
annotation syntax. Figure 2(a) represents the gen-
eral annotation, for the function “string-at-least-
one-member-of”, which is provided when the func-
tion is defined. This general annotation is then used
to generate an annotation instance (Figure 2(b)) at
each call site of the function in the policy (Fig-
ure 1). The annotation instance is obtained by
first substituting “&Param 1” and “&Param 2”
with “E-Mail” and {“.gov”,“.edu”} respectively
and then generating the corresponding boolean for-
mula.

The Boolean formula generated in the Boolean-
Form element can be consumed by a policy anal-
ysis tool. For example, consider a policy analysis
tool that performs similarity analysis on policies.
Given two policies P1 and P2, a similarity analyzer
tool, enumerates the relationship between the sets
of requests permitted (denied) by P1 and P2. Such
a tool typically abstracts policies into Boolean ex-
pressions and uses SAT solving or model checking
techniques to determine the relationships between
them. Similarity analysis is very useful in scenar-
ios where one wants to determine compatibility be-
tween policies, for example in service virtualization
systems where a data owner would want to store his
data on a machine whose policies closely matches
his own policies.

Let the P1 represent a data owner policy that
permits access to its files between 8 A.M - 5 P.M
to users whose E-mail id belongs to the “.edu” do-
main. Let P2 be a resource owner policy that per-
mits access to files on its machine between 6 A.M -
10 P.M to users whose E-Mail id belongs to the
“.edu” or “.gov” domain. Using our annotation
syntax P1 can be represented by the Boolean-Form
element:
〈Boolean-Form〉
(8 A.M ≤ Time ≤ 5 P.M) and (E-Mail == “.edu”)
〈/Boolean-Form〉.
Similarly P2 can be represented as :
〈Boolean-Form〉
(6 A.M ≤ Time ≤ 10 P.M) and (E-Mail == “.edu”
or E-Mail == “.gov”)
〈/Boolean-Form〉.

3

A policy similarity analyzer can directly con-
sume the Boolean expressions for P1 and P2 to per-
form the similarity analysis.

The proposed annotation syntax can be used
to express different categories of Boolean expres-
sions (as identified in [1]), for which the satisfia-
bility problem is tractable and which occur often
in policies of varied domains. Thus our annotation
syntax can support state of the art policy analysis
tools.

4 The Annotation Framework

We now proceed to describe how annotations
work. An overview of the annotation framework is
shown in Figure 3. The framework consists of two
main components: the annotated function reposi-
tory and the annotation module.

The annotated function repository stores func-
tion names paired with their annotations. Each
time a new function is defined, it needs to be reg-
istered in this annotated function repository. Note
that users are required to provide such annotations
only once. Then, when the function is used in a pol-
icy, the user does not need to write a specific anno-
tation for it. Instead, our system will automatically
generate the corresponding annotation through the
annotation module.

The annotation module takes XACML policies
and the annotated function repository as its in-
puts. There are two components in this module.
One is the annotation verifier, which is responsible

for verifying the consistency between the function
implementation and its specified annotation. The
other is the annotation interpreter, which add an-
notations below each function in a specific policy,
and also generate boolean formulae.

Let us have a closer look at the annotation in-
terpreter. There are two phases in interpreting a
function. In the first phase, for each occurrence
of a function in a given XACML policy, the anno-
tation interpreter retrieves the annotation for this
function from the annotated function repository ac-
cording to the function name. Then, the interpreter
replaces the value of each operand with the actual
arguments passed as inputs to the function in the
policy, thereby generating specific instances of the
annotations.

The second phase is to generate the Boolean
formula for the annotation instance. Such step is
achieved by concatenating variables with operators
according to the order of their appearance in the
annotation instance. For some complicated opera-
tors such as set operators, their semantics is hard-
coded in the annotation interpreter. In the previ-
ous example (Figure 2), the interpreter knows that
the semantics of the operator “belongs-to” is “at
least one member of its first operand set must be
equal to one member of its second operand set”,
and hence the interpreter is able to generate the
desired Boolean expression. The annotation syntax
and hence the interpreter can be extended to sup-
port complex domain specific operators that might
be necessary for complicated extension functions.

The Boolean formula generated by the anno-
tation module can be consumed by any external
XACML policy analysis tool. It is worth noting
that the format of the Boolean expression to be gen-
erated can be specified as an additional parameter
to the interpreter by the external XACML policy
analysis tool.

4.1 Annotation Consistency Verification

As we mentioned in the introduction, the anno-
tation specified by users may be incorrect due to
numerous reasons, and incorrect annotations may
have negative influence on the policy analysis. To
address this issue, we propose the inclusion of an
annotation verifier component in our system. This
verifier checks the consistency between the given
annotation and its associated function implemen-
tation.

For Java implementations of the XACML func-
tions, we propose the use of verification techniques
employed in the context of JML[4]. JML is an an-

4

notation language for Java classes and methods,
which enables formal specifications of properties
and requirements like pre-/post-conditions. Sev-
eral proof tools (e.g. JACK[2]) exist that con-
vert JML annotated Java code to formal models,
which in turn are fed as theories to an underlying
proof checker in order to prove that a Java method
meets its JML specification. In a similar spirit,
our XACML function annotation can be viewed as
a form of postcondition specification for XACML.
In order to perform the annotation verification we
can either (i) translate our annotations into JML
post-conditions and then use one of the available
proof tools to perform the verification, or (ii) de-
velop a new tool that would translate the annota-
tions to theories suitable for use with a chosen proof
checker. The former approach is simpler and more
suitable for Java implementations since all the nec-
essary components are readily available. While the
latter approach would involve more effort with re-
spect to performing the translation to theories in
the chosen proof checker, but is necessary for non
Java implementations of functions.

The computation complexity of this verification
component could be high. However, this phase is
optional and needs to be performed only once when
the function and its annotation is registered with
repository.

5 Conclusion

In this paper we have presented an annotation
technique which can benefit XACML policy anal-
ysis tools. We proposed the annotation syntax
as well as the annotation framework. Specifically,
each function is required to be registered once in the
annotated function repository together with its an-
notation. Then our system can automatically gen-
erate annotation instance for specific policies. The
generated annotations not only help understand-
ing of policies, but also contains boolean formulae
which can be directly consumed by most existing
policy analysis tools. Further, we addressed the
important issue of verifying the consistency of func-
tions and associated annotations.

References

[1] D. Agrawal, J. Giles, K. W. Lee, and J. Lobo. Policy
ratification. In Proc. Policy, pages 223–232, 2005.

[2] L. Burdy and A. Requet. Jack : Java applet cor-
rectness kit. In In GDC 2002, Singapore, November
2002., 2002.

[3] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact

analysis of access-control policies. In Proc. ICSE,
pages 196–205, 2005.

[4] Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
JML: A notation for detailed design. In Behavioral
Specifications of Businesses and Systems, pages
175–188, 1999.

[5] P. Mazzoleni, E. Bertino, and B. Crispo. XACML
policy integration algorithms. In Proc. SACMAT,
pages 223–232, 2006.

[6] T. Moses. Extensible access control markup lan-
guage (XACML) version 1.0. Technical report, OA-
SIS, 2003.

[7] http://docs.oasis-open.org/xacml/xacmlRefs.html
#Products.

5

