
An Approach to Evaluate Policy Similarity

Dan Lin† Prathima Rao† Elisa Bertino† Jorge Lobo‡

†Department of Computer Science ‡IBM T.J. Watson Research Center
Purdue University, USA USA

{lindan,prao,bertino}@cs.purdue.edu jlobo@us.ibm.com

ABSTRACT
Recent collaborative applications and enterprises very often
need to efficiently integrate their access control policies. An
important step in policy integration is to analyze the sim-
ilarity of policies. Existing approaches to policy similarity
analysis are mainly based on logical reasoning and boolean
function comparison. Such approaches are computationally
expensive and do not scale well for large heterogeneous dis-
tributed environments (like Grid computing systems). In
this paper, we propose a policy similarity measure as a filter
phase for policy similarity analysis. This measure provides a
lightweight approach to pre-compile a large amount of poli-
cies and only return the most similar policies for further
evaluation. In the paper we formally define the measure, by
taking into account both the case of categorical attributes
and numeric attributes. Detailed algorithms are presented
for the similarly computation. Results of our case study
demonstrates the efficiency and practical value of our ap-
proach.

Categories and Subject Descriptors
D.4.6 Security and Protection—Access controls

General Terms
Algorithms, Measurement,Design

Keywords
Policy similarity measure, XACML policies, Access control
policies

1. INTRODUCTION
A key goal for collaborative applications is to share re-

sources, such as services, data and knowledge. Such appli-
cations may have different objectives, such as provisioning
some complex service to third parties or performing some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.
Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

collaborative data analysis, and may adopt different collab-
oration mechanisms and tools. However, a common require-
ment is represented by the need to assure security for the
shared resources. It is important that collaboration does not
undermine security of the collaborating parties and their re-
sources. Security however should not drastically reduce the
benefits deriving from the collaboration by severely restrict-
ing the access to the resources by the collaborators. An
important question that a party P thus may need to answer
when deciding whether to share a resource with other parties
is whether these other parties guarantee the similar level of
security as P . This is a complex question and approaches to
it require developing adequate methodologies and processes,
and addressing several issues. One relevant issue is the com-
parison of access control policies; access control policies gov-
ern access to protected resources by stating which subjects
can access which data for which operations and under which
circumstances. Access control represents a key component
of any security mechanism. A party P may decide to release
some data to a party P ′ only if the access control policies of
P ′ are very much the same as its own access control policies.
It is important to notice that an approach under which P
just sends its policies together with the data to P ′ so that
P ′ can directly enforce these policies may not always work.
The evaluation of P ’s policies may require accessing some
additional data that may not be available to P ′ for various
reasons, for example for confidentiality, or P may not just
be able to share, for confidentiality reasons, its policies with
P ′.

More complex situations arise when several alternative re-
sources and services, each governed by its own independently-
administered access control policies, may have to be selected
and combined in a complex service. In order to maximize
the number of requests that can be satisfied by the com-
plex service, and also satisfy the access control policies of
each participating resource and service, one would like to
select a combination of resources and services characterized
by access control policies that are very much similar. As
an example consider the case of a grid computing system
consisting of data owners and resource owners, each with its
own access control policies [10]. For a subject to be able to
run a query on the data, this subject must verify both the
access control policy associated with the queried data and
the access control policy of the resource to be used to process
the query. It is often the case that such parties do not have
exactly the same access control policies; therefore in order
to maximize the access to the data, the data for processing
should be stored at the resource having access control poli-

cies similar to the access control policies associated with the
data.

A brute force approach is to simply evaluate both policies
for any request and any assignment, and then compare the
results. Obviously, such an approach is very inefficient and
even infeasible when the request domain is infinite. There-
fore, two recent approaches have been proposed to address
the problem of policy comparison. The first approach is
based on model checking [5], whereas the second is based
on logical reasoning [1]. However, both these approaches
are computationally expensive, especially when dealing with
large scale heterogeneous distributed environments and time
constraints. The problem is equivalent to solving Boolean
satisfiability, which is NP-complete. In this paper, we thus
propose an alternative approach, based on principles from
the information retrieval field. Our approach uses the no-
tion of policy similarity measure, based on which a similarity
score can be quickly computed for two policies. Specifically,
if the similarity score of policy P1 and P2 is higher than that
of policy P1 and P3, it means P1 and P2 may yield same de-
cisions to a larger common request set than P1 and P3 will
do. The policy similarity measure can serve as a filter before
applying any additional logical reasoning or boolean func-
tion comparison. It provides a useful lightweight approach
to pre-compile a list of policies and return the most similar
policies for further exploration. Such exploration could be
a fine-grained policy analysis which spots the common and
different parts of two policies; it can also be a visualization
phase where users can easily identify the similar policies and
make their own decisions. Our approach parallels the quick
filter approach for multimedia data querying. In multimedia
data querying, a first quick filtering of the data is executed;
such filtering phase discards the data that are certainly not
part of the query reply. The data that are not discarded
by the quick filter are then analyzed by using specialized
algorithms to determine the actual query results.

In the current paper, we focus on a similarity measure
for policies written in XACML (Extensible Access Control
Mark-up Language) [15], because of its widespread adop-
tion. The similarity measure takes into account the policy
structure typical of XACML. Given two polices, our algo-
rithm for computing the similarity score first groups the
same components of the two policies, and evaluate their sim-
ilarity by using hierarchy distance and numerical distance.
Then the scores obtained for the different components of the
policies are combined according to a weighted combination
in order to produce an overall similarity score. As our case
study shows, our approach can successfully identify similar
policies.

The rest of the paper is organized as follows. Section 2 in-
troduces preliminary notions concerning XACML. Section 3
introduces the proposed policy similarity measure, the algo-
rithm for computing the similarity, and a case study. Section
4 discusses related works on access control policy analysis.
Finally, Section 5 concludes the paper and outlines future
work.

2. PRELIMINARY NOTIONS AND AN IL-
LUSTRATIVE EXAMPLE

An XACML policy [15] consists of three major compo-
nents, namely a Target, a Rule set, and a rule combining
algorithm for conflict resolution. The Target specifies some

Effect

Deny
Rule

Permit
Rule

ConditionTarget EffectConditionTarget

Subject Resource Action Subject ActionResource

Policy

Target

Figure 1: Policy Structure

predicates on the attribute values in a request, which must
be held in order for the policy to be applicable to the re-
quest. The attributes in the Target element are categorized
into Subject, Resource and Action. A Rule set consists of one
or more Rules. Each Rule in turn consists of Target, Con-
dition and Effect elements. The rule Target has the same
structure of the policy Target. The only difference is that
the rule Target specifies the situation when the rule can be
applied. A Condition element specifies some restrictions on
request attribute values that must be satisfied in order to
yield a Permit or Deny decision as specified by the Effect
element. Figure 1 gives an overview of a policy structure.

As an example that we will use throughout the paper, we
consider three policies P1, P2 and P3, in the context of data
and resource management for a grid computing system in
a university domain. In particular, P1 is a data owner pol-
icy, whereas P2 and P3 are resource owner policies. Specifi-

PolicyId=P1
<PolicyTarget

GroupName=IBMOpenCollaboration>
<RuleId=R11 Effect=Permit>

<Target>
<Subject Designation belong to{Professor,

PostDoc, Student, TechnicalStaff} >
<Resource FileType belong to{Source,

Documentation, Executable} >
<Action AccessType belong to{Read, Write} >

</Target>
<Condition FileSize ≤ 100MB >

</Rule>
<RuleId=R12 Effect=Deny>

<Target>
<Subject Designation belong to{Student,

PostDoc, TechnicalStaff} >
<Resource FileType belong to{Source,

Documentation, Executable}>
<Action AccessType=Write>

</Target>
<Condition 19 : 00 ≤ Time ≤ 21 : 00>

</Rule>

Figure 2: Data Owner Policy P1

PolicyId=P2
<RuleId=R21 Effect=Permit>
<PolicyTarget GroupName belong to{IBMOpen-

Collaboration, IntelOpenCollaboration}>
<Target>

<Subject Designation belong to{Student,
Faculty, TechnicalStaff} >

<Action AccessType belong to{Read, Write}>
</Target>
<Condition FileSize ≤ 120MB >

</Rule>
<RuleId=R22 Effect=Permit>

<Target>
<Subject Designation=TechnicalStaff>
<Action AccessType belong to{Read, Write}>

</Target>
<Condition 19 : 00 ≤ Time ≤ 22 : 00 >

</Rule>
<RuleId=R23 Effect=Deny>

<Target>
<Subject Designation=Student>
<Action AccessType=Write>

</Target>
<Condition {19 : 00 ≤ Time ≤ 22 : 00>

</Rule>
<RuleId=R24 Effect=Deny>

<Target>
<Subject Designation belong to{Student,

Faculty, Staff}>
<Resource FileType=Media>
<Action AccessType belong to{Read, Write}>

</Target>
</Rule>

Figure 3: Resource Owner Policy P2

cally, P1 states that professors, postdocs, students and tech-
nical staff in the IBM project group are allowed to read or
write source, documentation or executable files of size less
than 100MB. P1 denies the write operations for postdocs,
students and technical staff between 19:00 and 21:00 be-
cause professors may want to check and make changes to
the project files without any distraction. P2 is an access
control policy for a project machine. P2 allows students,
faculty and technical staff in the IBM or Intel project group
to read or write files of size less than 120MB. P2 gives a
special permission to technical staff between time 19:00 and
22:00 so that technical staff can carry out system mainte-
nance and backup files, and denies students the permission
to write any file when technical staff is possibly working on
maintenance. Moreover, P2 does not allow any user to op-
erate on media files on the machine. P3 is an access control
policy for another machine, mainly used by business staff.
P3 states that only business staff in the group named “Pay-
roll” can read or write .xls files of size less than 10MB from
8:00 to 17:00, and it clearly denies students the access to the
machine. Figure 2, 3 and 4 report the XACML specifica-
tion for these policies.

From a user’s perspective, P1 is more similar to P2 than P3

because most activities described by P1 for the data owner
are allowed by P2. Our motivation is to quickly compute

PolicyId=P3
<PolicyTarget GroupName = Payroll >
<RuleId=R31 Effect=Permit>

<Target>
<Subject Designation=BusinessStaff>
<Resource FileType=“.xls”>
<Action AccessType belong to{Read, Write}>

</Target>
<Condition 8 : 00 ≤ Time ≤ 17 : 00,

FileSize ≤ 10MB >
</Rule>
<RuleId=R32 Effect=Deny>

<Target>
<Subject Designation=Student>
<Action AccessType belong to{Read, Write}>

</Target>
</Rule>

Figure 4: Resource Owner Policy P3

similarity scores S1 between P1 and P2, and S2 between P1

and P3, where we would expect that S1 be larger than S2

to indicate that the similarity between P1 and P2 is much
higher than the similarity between P1 and P3.

3. POLICY SIMILARITY MEASURE
Our proposed policy similarity measure is based on the

comparison of each corresponding component of the policies
being compared. Here, the corresponding component means
the policy targets and the same type of elements belonging
to the rules with the same effect.

We would like the policy similarity measure between any
two given policies to assign a similarity score that approx-
imates the relationship between the sets of requests per-
mitted (denied) by the two policies. The similarity score is
a value between 0 and 1, which reflects how similar these
rules are with respect to the targets they are applicable to
and also with respect to the conditions they impose on the
requests. For example, in a scenario where a set of requests
permitted (denied) by a policy P1 is a subset of requests
permitted (denied) by a policy P2, the similarity score for
policies P1 and P2 must be higher than the score assigned
in a scenario in which the set of requests permitted (denied)
by P1 and P3 have very few or no request in common.

We now proceed to introduce how to obtain the similar-
ity score of two policies. Given two policies P1 and P2, the
rules in these policies are first grouped according to their
effects, which results in a set of Permit Rules (denoted as
PR) and a set Deny Rules (denoted as DR). Each single
rule in P1 is then compared with a rule in P2 that has the
same effect, and a similarity score of two rules is obtained.
The similarity score obtained between the rules is then used
to find one-many mappings (denoted as Φ) for each rule in
the two policies. For clarity, we choose to use four separate
Φ mappings ΦP

1 , ΦD
1 , ΦP

2 and ΦD
2 . The mapping ΦP

1 (ΦD
1)

maps each PR(DR) rule r1i in P1 with one or more PR(DR)
rules r2j in P2. Similarly the mapping ΦP

2 (ΦD
2) maps each

PR(DR) rule r2j in P2 with one or more PR(DR) rules r1i

in P1. For each rule in a policy P1(P2), the Φ mappings
give similar rules in P2(P1) which satisfy certain similarity

threshold. The computation of the Φ mapping will be ad-
dressed in the Section 3.1.

By using the Φ mappings, we compute the similarity score
between a rule and a policy. We aim to find out how similar
a rule is with respect to the entire policy by comparing the
single rule in one policy with a set of similar rules in the
other policy. The notation rs1i(rs2j) denotes the similarity
score for a rule r1i(r2j) in policy P1(P2). The rule similarity
score rs1i(rs2j) is the average of the similarity scores be-
tween a rule r1i(r2j) and the rules similar to it given by the
Φ mapping. rs1i and rs2j are computed according to the
following expressions:

rs1i =







































∑

rj∈ΦP
1

(r1i)

Srule(r1i, rj)

|ΦP
1

(r1i)|
, r1i ∈ PR1

∑

rj∈ΦD
1

(r1i)

Srule(r1i, rj)

|ΦD
1

(r1i)|
, r1i ∈ DR1

(1)

rs2j =







































∑

ri∈ΦP
2

(r2j)

Srule(r2j , ri)

|ΦP
2

(r2j)|
, r2j ∈ PR2

∑

ri∈ΦD
2

(r2j)

Srule(r2j , ri)

|ΦD
2

(r2j)|
, r2j ∈ DR2

(2)

where Srule is a function that assigns a similarity score be-
tween two rules.

Next, we compute the similarity score between the per-
mit(deny) rule sets PR1(DR1) and PR2(DR2) of policies
P1 and P2 respectively. We use the notations SP

rule−set

and SD
rule−set to denote the similarity scores for permit and

deny rule sets respectively. The similarity score for a per-
mit(deny) rule set is obtained by averaging the rule similar-
ity scores (equations 1 and 2) for all rules in the set. The
permit and deny rule set similarity scores are formulated as
follows:

SP
rule−set =

NP R1
∑

i=1

rs1i +

NP R2
∑

i=1

rs2j

NPR1
+ NPR2

(3)

SD
rule−set =

NDR1
∑

i=1

rs1i +

NDR2
∑

i=1

rs2j

NDR1
+ NDR2

(4)

where NPR1
and NPR2

are the numbers of rules in PR1 and
PR2 respectively, NDR1

and NDR2
are the numbers of rules

in DR1 and DR2 respectively.
Finally, we combine the similarity scores for permit and

deny rule sets between the two policies along with a similar-
ity score between the Target elements of the two policies, to
develop an overall similarity score, Spolicy. The formulation
of Spolicy is given by the following equation:

Spolicy(P1, P2) = wT ST (P1, P2) + wpSP
rule−set + wdSD

rule−set

(5)
where ST is a function that computes a similarity score be-
tween the Target elements of any two given policies; wp and

Notation Meaning

P Policy
PR Permit rule set
DR Deny rule set
r Rule
a Attribute
v Attribute value
H Height of a hierarchy
Spolicy Similarity score of two policies
Srule Similarity score of two rules

SP
rule−set Similarity score of two sets of permit rules

SD
rule−set Similarity score of two sets of deny rules

S〈Element〉 Similarity score of elements,

〈Element〉 ∈ {′T ′,′ t′,′ c′,′ s′,′ r′,′ a′}
scat Similarity score of two categorical values
Scat Similarity score of two categorical predicates
snum Similarity score of two numerical values
Snum Similarity score of two numerical predicates
rs Similarity score between a rule and a policy
Φ Rule mapping
Ma Set of pairs of matching attribute names
Mv Set of pairs of matching attribute values
NPR Number of permit rules in a policy
NDR Number of deny rules in a policy
Na Number of attributes in an element
Nv Number of values of an attribute
SPath Length of shortest path of two categorical values
w〈Element〉 Weight of similarity scores of elements,

〈Element〉 ∈ {′T ′,′ t′,′ c′,′ s′,′ r′,′ a′}
ǫ Rule similarity threshold
δ Compensating score for unmatched values

Table 1: Notations

wd are weights that can be chosen to reflect the relative im-
portance to be given to the similarity of permit and deny
rule sets respectively. For normalization purpose, the weight
values should satisfy the constraint: wT + wp + wd = 1. An
example is given in Section 3.5 (refer to step 5–9).

The intuition behind the similarity score assigned to any
two policies is derived from the fact that two policies are
similar to one another when the corresponding policy ele-
ments are similar.

In the following sections, we introduce the detailed algo-
rithms for the computation of Φ mappings and rule similar-
ity score Srule. Table 1 lists main notations used throughout
the paper.

3.1 Computation of Φ Mappings
In this section, we discuss the procedure to determine the

Φ mappings for each rule in the permit and deny rule sets
in a policy.

The one-many Φ mappings determine for each PR(DR)
rule in P1(P2) which PR(DR) rules in P2(P1) are very simi-
lar. Intuitively, two rules are similar when their targets and
the conditions they specify are similar. Thus we define a Φ
mapping as follows:

Φ(ri) = {rj |Srule(ri, rj) ≥ ǫ} (6)

where Srule is computed by equation 7 and ǫ is a threshold.
The threshold term is important here, since it allows us to
calibrate the quality of the similarity approximation. We
expect that the actual value of the threshold will be very
specific to the policy domain. Figure 5 summarizes the pro-
cedure for calculating a Φ mapping. This procedure takes
two rule sets R′ and R′′ as inputs and computes a mapping

Procedure ComputePhiMapping(R′, R′′, ǫ)
Input : R′ and R′′ are sets of rules and ǫ
is a threshold value.
1. foreach rule r′ ∈ R′

2. Φ(r′) = Ø
3. foreach rule r′′ ∈ R′′

4. if Srule(r
′, r′′) ≥ ǫ then

5. Φ(r′) = Φ(r′) ∪ {r′′}
6. return Φ
end ComputePhiMapping.

Figure 5: Procedure for computing a Φ mapping

for each rule in R′ based on equation 6. An example of the
computation of Φ mapping is shown by steps 3 and 4 in
Section 3.5.

3.2 Similarity Score between Rules
Since our similarity measure serves as a lightweight filter

phase, we do not want to involve complicated analysis for
boolean expressions. Our similarity measure is developed
based on the intuition that rules ri and rj are similar when
both apply to similar targets and both specify similar con-
ditions on request attributes. Specifically, we compute the
rule similarity function Srule between two rules ri and rj as
follows:

Srule(ri, rj) = wtSt(ri, rj) + wcSc(ri, rj) (7)

wt and wc are weights that can be used for emphasizing the
importance of the target or condition similarity respectively.
For example, if users are more interested in finding policies
applied to similar targets, they can increase wt to achieve
this purpose. The weights satisfy the constraint wt + wc =
1. St and Sc are functions that compute a similarity score
between two rules based on the comparison of their Target
and Condition elements respectively.

As the Target element in each rule contains the Subject,
Resource and Action elements, each of these elements in turn
contains predicates on the respective category of attributes.
Thus, the Target similarity function St is computed as fol-
lows:

St(ri, rj) = wsSs(ri, rj) + wrSr(ri, rj) + waSa(ri, rj) (8)

In equation 8, ws, wr, wa represent weights that are assigned
to the corresponding similarity scores. Like in the previous
equations, weight values need to satisfy the constraint ws +
wr + wa = 1. Ss, Sr and Sa are functions that return a
similarity score based on the Subject, Resource and Action
attribute predicates respectively in the Target elements of
the two given rules.

The computation of functions Sc, Ss, Sr and Sa involves
the comparison of pairs of predicates in the given pair of rule
elements, which we discuss in detail in the next subsection.

3.3 Similarity Score of Rule Elements
Each of the rule elements Subject, Resource, Action and

Condition is represented as a set of predicates in the form of
{attr name1 ⊕1 attr value1, attr name2 ⊕2 attr value2, ...},
where attr name denotes the attribute name, ⊕ denotes a
comparison operator and attr value represents an attribute

value. We assume that there are no syntactic variations for
the same attribute name. For example, there cannot exist
attribute names “emp-name”, “EmpName” in different poli-
cies all of which refer to the employee name attribute. The
unification of the attribute names is out of the scope of this
paper as many existing approaches [11, 13, 16] developed for
schema matching can be adopted to handle this problem.

Based on the type of attribute values, predicates are di-
vided into two categories, namely categorical predicate and
numerical predicate.

• Categorical predicate: The attribute values of this type
of predicate are categorical data that belong to some
domain-specific ontology. Predicates like “Designation
= Professor” and “FileType = Documentation” belong
to the categorical type.

• Numerical predicate: The attribute values of this type
of predicate belong to integer, real, or date/time data
types. For example, predicates “FileSize < 10MB”,
“Time=12:00” are of numerical type.

The similarity score between two rules ri and rj regarding
the same element is denoted as S〈Element〉, where 〈Element〉
refers to ’c’ (condition), ’s’ (subject), ’r’ (resource) or ’a’
(action). The S〈Element〉 is computed by comparing the
corresponding predicate sets in two rules. There are three
steps. First, we cluster the predicates for each rule element
according to the attribute names. It is worth noting that
one attribute name may be associated with multiple val-
ues. Second, we find the predicates in the two rules whose
attribute names match exactly and then proceed to com-
pute a similarity score for their attribute values. The way
we compute similarity score between attribute values differs,
depending on whether the attribute value is of categorical
type or numerical type (details of computation is covered in
the following subsection). Finally, we summarize the scores
of each pair of matching predicates and obtain the similarity
score of the rule element. Since not all attributes in one rule
can find a matching in the other, we include a penalty for
this case by dividing the sum of similarity scores of match-
ing pairs by the maximum number of attributes in a rule.
In addition, there is a special case when the element set is
empty in one rule, which means no constraint exists for this
element. For this case, we consider the similarity of the el-
ements of the two rules to be 0.5 due to the consideration
that one rule is a restriction of the other and the 0.5 is the
estimation of the average similarity.

The formal definition of S〈Element〉 is given by equation 9.
S〈Element〉(ri, rj) =











∑

(a1k,a2l)∈Ma

S〈attr typ〉(a1k, a2l)

max(Na1
,Na2

)
, Na1

> 0 and Na2
> 0;

1, otherwise.
(9)

In equation 9,Ma is a set of pairs of matching predicates
with the same attribute names; a1k and a2l are attributes
of rules r1i and r2j respectively; S〈attr typ〉 is the similarity
score of attribute values of the type attr typ; and Na1

and
Na2

are the numbers of distinct predicates in the two rules
respectively.

In addition, the computation of the similarity score of two
policy targets ST is the same as that for the rule targets i.e.
St.

3.3.1 Similarity Score for Categorical Predicates
For the categorical values, we not only consider the exact

match of two values, but also consider their semantics simi-
larity. For example, policy P1 is talking about the priority of
professors, policy P2 is talking about faculty members, and
policy P3 is talking about business staff. In some sense, pol-
icy P1 is more similar to policy P2 than to policy P3 because
“professors” is a subset of “faculty members” which means
that policy P1 could be a restriction of policy P2. Based
on this observation, our approach assumes that a hierarchy
relationship exists for the categorical values. The similarity
between two categorical values (denoted as Scat) is then de-
fined according to the shortest path of these two values in
the hierarchy. The formal definition is shown below:

scat(v1, v2) = 1−
SPath(v1, v2)

2H
(10)

where SPath(v1, v2) denotes the length of the shortest path
between two values v1 and v2, and H is the height of the
hierarchy. In the equation 10, the length of the shortest path
of two values is normalized by the possible maximum path
length which is 2H. The closer the two values are located in
the hierarchy, the more similar the two values will be, and
hence a higher similarity score scat will be obtained.

Figure 6 gives an example hierarchy, where each node rep-
resents a categorical value (specific values are given in Fig-
ure 11). The height of the hierarchy is 3, and the length
of maximum path of two values is estimated as 2 × 3 = 6
(the actual maximum path in the figure is 5 due to the im-
balance of the hierarchy). The SPath(E, B) is 1, and the
SPath(E, F) is 2. According to the equation 10, the sim-
ilarity score of nodes E and B is 1 − 1/6 = 0.83, and the
similarity score of nodes E and F is 1−2/6 = 0.67. From the
obtained scores, we can observe that E is more similar to B
than to F . The underlying idea is that the parent-child re-
lationship (B and E) implies one rule could be a restriction
for the other and this would be more helpful than the sibling
relationship (E and F) especially in the rule integration.

1.2.1.1

A

C D

HGE

B

F I J

LK M

1

1.1 1.31.2

1.1.1 1.1.2

1.2.1 1.2.2

1.3.1 1.3.2

1.2.1.2 1.2.1.3

Figure 6: An Example Hierarchy

To avoid repeatedly searching the hierarchy tree for the
same value during the shortest path computation, we pro-
pose to assign each node a hierarchy code (Hcode), indicat-
ing the position of each node. In particular, the root node
is assigned an Hcode equal to ‘1’, and its children nodes are
named in the order from left to right by appending their po-
sition to the parent’s Hcode with a separator ‘.’, where we
will have Hcodes like ‘1.1’ and ‘1.2’. Then the process con-

tinues till the leaf level. The number of elements separated
by ‘.’ is equal to the level at which a node is located. From
such Hcodes we can easily compute the length of shortest
path between two nodes. We compare two Hcodes element
by element until we reach the end of one Hcode or there
is a difference. The common elements correspond to the
same parent nodes they share, and the number of different
elements correspond to the levels that they need to be gener-
alized to their common parent node. Therefore, the shortest
path is the total number of different elements in two Hcodes.
For example, the length of the shortest path from node ‘1.1’
to ‘1.2’ is 2, as there are two different elements in the Hcodes.

Note that our definition of scat can also be applied to
categorical values which do not lie in a hierarchy. In that
case, if two values are matched, their shortest path SPath
is 0 and their similarity score will be 1; otherwise, SPath is
infinity and their similarity score becomes 0.

Having introduced our approach to compare two single
values, we now extend the discussion to two sets of values.
Suppose there are two attributes a1 : {v11, v12, v13, v14} and
a2 : {v21, v22, v23}, where a1 and a2 are the attribute names
belonging to policy P1 and P2 respectively, and values in the
brackets are corresponding attribute values. Note that the
listed values belonging to the same attribute are different
from one another. The similarity score of the two attribute
value sets is the sum of similarity scores of pairs 〈v1k, v2l〉
and a compensating score δ (for non-matching attribute val-
ues). Obviously, there could be many combinations of pairs.
Our task is to find a set of pairs (denoted as Mv) which
have the following properties:

1. If v1k = v2l, then (v1k, v2l) ∈Mv.

2. For pairs v1k 6= v2l, pairs contributing to the maximum
sum of similarity scores belong to Mv.

3. Each attribute value v1k or v2l occurs at most once in
Mv.

The process of finding the pair set Mv is the following.
First, we obtain the hierarchy code for each attribute value.
See Figure 7 for an example of these values for the example
hierarchy from Figure 6. Then we compute the similarity
between pairs of attribute values with the help of the hi-
erarchy code. Figure 8 shows the resulting scores for the

v13

v12

v14

v21

v23

v22

Attr Hcode Attr Hcode

Policy P1 2

1.1

1.2.1.1

1.2.1.2

1.3.2

1.1

1.2

1.3.2

v

Policy P

11

Figure 7: Hierarchy Code

example. Next, we pick up exactly matched pairs, which
are 〈v11, v21〉 and 〈v14, v23〉 in the example. For the remain-
ing attribute values, we find pairs that maximize the sum
of similarity scores of pairs. In this example, 〈v12, v22〉 has
the same similarity score as 〈v13, v22〉, and hence we need to

1

2

P1

v21

v22

v23

v11 v12 v13 v14

0.50.330.33

0.67 0.50.67

0.17(1.3.2)

(1.1) (1.3.2)(1.2.1.2)(1.2.1.1)

0.5

0.67

0.17

(1.1)

(1.2)

1

P

Figure 8: Similarity Score of Two Sets of Attributes

further consider which choice can lead to a bigger compen-
sating score. The compensating score δ is for attribute val-
ues which do not have matchings when two attributes have
different number of values. δ is computed as average simi-
larity scores between unmatched values with all the values
of the other attribute. For this example, no matter which
pair we choose, the compensating score is the same. Sup-
pose we choose the pair 〈v12, v22〉, and then one value v13

is left whose compensating score δ is (0.33 + 0.67 + 0.17)/3
= 0.39. Finally, the similarity score for the two attribute
a1 and a2 takes into account both the similarity of attribute
names and attribute values. Specifically, the similarity score
for attribute names is 1 since they are exactly matched,
and the similarity score for attribute values is the average
scores of pairs and the compensating score. The final score
is 1

2
[1 + (1 + 1 + 0.67 + 0.39)/4] = 0.88.

The similarity score of two categorical predicates is finally
defined as below:

Scat(a1, a2) =
1

2

[

1+

∑

(v1k,v2l)∈Mv
scat(v1k, v2l) + δ

max(Nv1
, Nv2

)

]

(11)

δ =







































∑

(v1k,)/∈Mv

Nv2
∑

l=1

scat(v1k, v2l)

Nv2

, Nv1
> Nv2

;

∑

(,v2l)/∈Mv

Nv1
∑

k=1

scat(v1k, v2l)

Nv1

, Nv2
> Nv1

.

(12)

where Nv1
and Nv2

are the total numbers of values asso-
ciated with attributes a1 and a2 respectively.

3.3.2 Similarity Score for Numerical Predicates
Unlike categorical values, numerical values do not have

any hierarchical relationship. For computation efficiency,
the similarity of two numerical values v1 and v2 is defined
based on their difference as shown in equation 13.

snum(v1, v2) =
|v1 − v2|

max(v1, v2)
(13)

The snum tends to be large when the difference between two
values is small.

The computation of the similarity score of two numerical
value sets is similar to that for the two categorical value sets;
we thus have the following similarity definition for numerical
predicates:

Snum(a1, a2) =
1

2

[

1 +

∑

(v1k,v2l)∈Mv
snum(v1k, v2l) + δ

max(Nv1, Nv2)

]

(14)

δ =







































∑

(v1k,)/∈Mv

Nv2
∑

l=1

snum(v1k, v2l)

Nv2

, Nv1
> Nv2

;

∑

(,v2l)/∈Mv

Nv1
∑

k=1

snum(v1k, v2l)

Nv1

, Nv2
> Nv1

.

(15)

3.4 Overall Algorithm
In this section, we summarize the steps involved in the

computation of a similarity score between two policies P1

and P2. Figure 9 presents the pseudo-code of the complete
algorithm, which consists of five phases. First, we categorize
rules in P1 and P2 based on their effects (line 1). Second, we
compute the similarity score Srule for each pair of rules in P1

and P2 (line 2-7). Third, based on the Srule, we compute the
Φ mappings (line 8-11). Fourth, we use the Φ mappings to
calculate the rule set similarity scores (line 12-23). Finally,
the overall similarity score is obtained (line 24).

Algorithm PolicySimilarityMeasure(P1, P2)
Input : P1 is a policy with n rules {r11, r12,, r1n}
and P2 is a policy with m rules {r21, r22,, r2m}

1. Categorize rules in P1 and P2 based on their effects.
Let PR1(PR2) and DR1(DR2) denote the set of permit
and deny rules respectively in P1(P2).

/* Compute similarity scores for each rule in P1 and P2 */
2. foreach rule r1i ∈ PR1

3. foreach rule r2j ∈ PR2

4. Srule(r1i, r2j) //compute similarity score of rules
5. foreach rule r1i ∈ DR1

6. foreach rule r2j ∈ DR2

7. Srule(r1i, r2j) //compute similarity score of rules

/* Compute Φ mappings */
8. ΦP

1 ←ComputePhiMapping(PR1, PR2, ǫ)
9. ΦP

2 ←ComputePhiMapping(PR2, PR1, ǫ)
10. ΦD

1 ←ComputePhiMapping(DR1, DR2, ǫ)
11. ΦD

2 ←ComputePhiMapping(DR2, DR1, ǫ)

/* Compute the rule set similarity scores */
12. foreach rule r1i ∈ P1

13. if r1i ∈ PR1 then
14. rs1i ← ComputeRuleSimilarity(r1i, ΦP

1)
15. elsif r1i ∈ DR1 then
16. rs1i ← ComputeRuleSimilarity(r1i, ΦD

1)
17. foreach rule r2j ∈ P2

18. if r2j ∈ PR2 then
19. rs2j ← ComputeRuleSimilarity(r2j , ΦP

2)
20. elsif r1i ∈ DR1 then
21. rs2j ← ComputeRuleSimilarity(r2j , ΦD

2)
22. SP

rule−set ← average of rs of permit rules
23. SD

rule−set ← average of rs of deny rules

/* Compute the overall similarity score */
24. Spolicy(P1, P2) = ST (P1, P2) + wpSP

rule−set + wdSD
rule−set

end PolicySimilarityMeasure.

Figure 9: Algorithm for Policy Similarity Measure

Procedure ComputeRuleSimilarity(r′, Φ)
Input : r′ is a rule and Φ is a mapping between rules
1. foreach rule r′′ ∈ Φ
2. sum = sum +Srule(r

′, r′′)
3. rs = sum

|Φ|

4. return rs
end ComputeRuleSimilarity.

Figure 10: Procedure for Computing Rule Similar-
ity

The most computationally expensive part of the algorithm
is to compute the Srule. We analyze its complexity as fol-
lows. Srule is the sum of similarity scores of corresponding
elements. Suppose the average number of attributes in one
element is na. To find matching attributes with the same
name, it takes O(nalogna) to sort and compare the list of
attribute names. For each pair of matching attributes, we
further compute the similarity scores of attribute values.
Generally speaking, one attribute name is associated with
one or very few number of values (e.g. ≤ 10). Therefore,
we estimate the time for the attribute value computation to
be a constant time c. Then the complexity of computing
a similarity score of two elements is O(nalogna+nac). For
each rule, there are at most 5 elements, and the computation
complexity of Srule is still O(nalogna).

It is worth noting that na is usually not a big value. For
an entire policy, the total number of attribute-value pairs
tested in [5] is 50. The maximum number of attribute-value
pairs in one policy we have seen so far is about 500 [17]. Con-
sidering that the average number of attributes in one policy
component is even smaller, our similarity score computation
is very efficient.

3.5 Case Study
In this section we provide a detailed example to illustrate

how our policy similarity measure algorithm works. Con-
tinuing with the policy examples P1, P2 and P3 introduced
in section 2, we show how our policy similarity algorithm
assigns a similarity score between these policies. We further
show that our similarity algorithm assigns a higher similar-
ity score between the data owner policy P1 and resource
owner policy P2 than between the data owner policy P1 and
resource owner policy P3, adequately representing the rela-
tionship between the sets of requests permitted(denied) by
the corresponding policies. Thus using the similarity score
computed by our algorithm, the data owner is notified that
P2 is more compatible to his own policy. The data owner
only need to further check one policy P2 instead of testing
two policies before sending his data to the resource owner.

In the following discussion we refer to the policies shown
in Figures 2, 3 and 4. We also refer to two attribute hierar-
chies in the domain, namely the user hierarchy (Figure 11)
and file type hierarchy (Figure 12). Without having any ad-
ditional knowledge of the application, we assume that each
rule component is equally important and hence assign the
same weight to all computations.

The similarity score between P1 and P2 is calculated as
follows:

1. We categorize rules in P1 and P2 based on their effects

PostDoc

Department

Student Faculty Staff

Researcher InstructorUndergraduate Graduate Business Technical
 Staff Staff

Professor Professor Emeritus

Figure 11: User Hierarchy in the University Domain

FileType

Documentation Executable

.o

Media

.exepdf .doc .txtmp3 .avi... .c .cpp

Source

.javaxls

Figure 12: File Hierarchy in the University Domain

and find the permit and deny rule sets, PR1(PR2) and
DR1(DR2). These sets are

PR1 = {R11}
PR2 = {R21, R22}
DR1 = {R12}
DR2 = {R23, R24}

2. We compute the rule similarity scores between pairs of
rules with the same effect in both policies.

S(R11, R21) = 0.81
S(R11, R22) = 0.56
S(R12, R23) = 0.81
S(R12, R24) = 0.76

3. For policy P1, we find the Φ mappings ΦP
1 and ΦD

1

using the ComputePhiMapping procedure. We use
0.7 as the value of the threshold for this example when
computing the mappings. The Φ mappings obtained
for policy P1 are as follows:

ΦP
1 = {R11→ {R21}}

ΦD
1 = {R12→ {R23, R24}}

4. The Φ mappings ΦP
2 and ΦD

2 are calculated similarly
for policy P2.

ΦP
2 = {R21→ {R11}, R22→ {}}

ΦD
2 = {R23→ {R12}, R24→ {R12}}

5. For each rule r1i in P1, the corresponding rule similar-
ity score rs1i is computed:

rs11 = Srule(R11, R21) = 0.81

rs12 =
1

2

[

Srule(R12, R23) + Srule(R12, R24)
]

= 0.79

6. For each rule r2j in P2, the corresponding rule similar-
ity score rs2j is computed:

rs21 = Srule(R11, R21) = 0.81

rs22 = 0

rs23 = Srule(R12, R23) = 0.81

rs24 = Srule(R12, R24) = 0.76

7. Then, the similarity between the permit rule sets of P1

and P2, given by SP
rule−set is computed:

SP
rule−set =

rs11 + rs21 + rs22

3

=
0.81 + 0.81 + 0

3
= 0.54

8. The similarity between the deny rule sets of P1 and
P2, given by SD

rule−set, is computed:

SD
rule−set =

rs12 + rs23 + rs24

3

=
0.79 + 0.81 + 0.76

3
= 0.79

9. Finally the permit and deny rule set similarities and
policy target similarities are combined to obtain the
overall policy similarity score between policies P1 and
P2:

Spolicy(P1, P2) =
1

3
ST +

1

3
SP

rule−set +
1

3
SD

rule−set

=
1

3
· 0.75 +

1

3
· 0.54 +

1

3
· 0.79

= 0.71

We then calculate the policy similarity score for policies P1

and P3. The policy target similarity score ST = 0.5. The
rule similarity scores for policies P1 and P3 are:

S(R11, R21) = 0.7
S(R12, R23) = 0.66

By using the threshold 0.7, we obtain the following Φ map-
pings:

ΦP
1 = {R11→ {R31}}

ΦD
1 = {R12→ {}}

Following the same steps as described for policies P1 and P2,
we have the following similarity score between P1 and P3.

Spolicy(P1, P3) =
1

3
ST +

1

3
SP

rule−set +
1

3
SD

rule−set

=
1

3
· 0.5 +

1

3
· 0.7 +

1

3
· 0

= 0.4

We observe that policy P1 is clearly more similar to policy
P2 than to policy P3. Hence the data owner would choose
to maintain his data on the resource owner with policy P2

rather than the resource owner with policy P3.

4. RELATED WORK

A lot of efforts has been devoted to the analysis of access
control policies with respect to policy property verification,
policy conflict detection and so forth.

Most approaches to policy analysis are based on the tech-
nique of model checking. Ahmed et al. [2] propose a method-
ology for specifying and verifying security constraints in role
based CSCW (Computer Supported Cooperative Work) sys-
tems by using finite-state based model checking. Guelev et
al. present a formal language for expressing access-control
policies and queries [6]. Their follow-up work [18] provides
a model-checking algorithm which can be used to evaluate
access control policies written in their proposed language.
The evaluation includes not only assessing whether the poli-
cies give legitimate users enough permissions to reach their
goals, but also checking whether the policies prevent intrud-
ers from reaching their malicious goals.

Concerning the specific problem of policy similarity, this
problem has not been much investigated and only a few
approaches have been proposed. Koch et al. [8] propose
a uniform framework for comparing different policy mod-
els. Specifically, they use graph transformations to represent
policy change and integration. Though they present exam-
ples of changes and the result as graphs, they did not give
any detailed algorithm. A more practical work is by Fisler
et al. [5], who developed a software tool known as Mar-
grave for analyzing role-based access-control policies written
in XACML. Margrave represents policies using the Multi-
Terminal Binary Decision Diagram (MTBDD) and is able
to verify policy properties and analyze differences between
versions of policies. In [3], Backes et al. propose an algo-
rithm for checking refinement of privacy policies in an enter-
prise. The concept of policy refinement is similar to policy
similarity in some sense because policy refinement checks
if one policy is a ‘subset’ of another. Another category of
relevant related work is represented by the approaches to
the problem of policy conflict detection [9, 14]. A recent
work by Agrawal et al. [1] investigates interactions among
polices and proposes a ratification tool by which a new pol-
icy is checked before being added to a set of policies. The
main idea of such approach is to determine satisfiability of
boolean expressions corresponding to different policies.

Most recently, Mazzoleni et al. [10] also considered pol-
icy similarity problem in their proposed policy integration
algorithm. However, their method of computing policy sim-
ilarity is limited in identifying policies specifying the same
attribute.

Unlike existing approaches to policy similarity analysis
which require extensive comparison between policies, our
proposed similarity measure is a lightweight approach which
aims at reducing the searching space, that is, at reducing the
number of policies that need to be fully examined. From the
view of an entire policy analysis system, our policy similarity
measure can be seen as a tool which can act as a filter phase,
before more expensive analysis tools are applied.

For completeness it is also important to mention that the
problem of similarity for documents has been investigated in
the information retrieval area. Techniques are thus available
for computing similarity among two documents (e.g. [4, 7,
12]). However, these cannot be directly applied because of
the special structures and properties of the XACML policies.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we defined a novel policy similarity measure

which can be used as a filter approach in policy compari-
son. The policy similarity measure represents a lightweight
approach to quickly analyze similarity of two policies. Ac-
cording to the obtained similarity scores, dissimilar policies
can be safely pruned so that the number of policies which
need to be further examined is largely reduced. Detailed al-
gorithms of computation of similarity scores are presented.
Finally, we applied our similarity measure to an example ap-
plication and the result shows that the proposed similarity
measure reflect the policy similarity very well.

We plan to extend our work along the following direc-
tions. The first direction is related to extend our similarity
measure algorithm with techniques to solve the heterogene-
ity of attribute names. Also the use of ontology and on-
tological reasoning needs to be investigated. Our goal is
to enhance our similarity measure approach with semantic
reasoning techniques. The second is to integrate our algo-
rithm with other policy analysis tools in order to develop a
comprehensive environment for policy analysis. Another in-
teresting direction is to extend current approach to general
policy analysis not limited to XACML-based policies. This
may be feasible since different types of policies do share a
common set of entities.

Acknowledgement
The work reported in this paper has been partially sup-
ported by IBM under the OCR project “Privacy and Se-
curity Policy Management”. Participants to this project
are: Carnegie Mellon University, IBM T.J. Watson Research
Center, Purdue University.

6. REFERENCES
[1] D. Agrawal, J. Giles, K. W. Lee, and J. Lobo. Policy

ratification. In Proceedings of the 6th IEEE
International Workshop on Policies for Distributed
Systems and Networks (POLICY), pages 223–232,
2005.

[2] T. Ahmed and A. R. Tripathi. Static verification of
security requirements in role based cscw systems. In
Proceedings of the 8th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
196–203, 2003.

[3] M. Backes, G. Karjoth, W. Bagga, and M. Schunter.
Efficient comparison of enterprise privacy policies. In
Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC), pages 375–382, 2004.

[4] M. Ehrig, P. Haase, M. Hefke, and N. Stojanovic.
Similarity for ontologies - a comprehensive framework.
In Proceedings of the 13th European Conference on
Information Systems, Information Systems in a
Rapidly Changing Economy (ECIS), 2005.

[5] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and
M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In Proceedings of
the 27th International Conference on Software
Engineering (ICSE), pages 196–205, 2005.

[6] D. P. Guelev, M. Ryan, and P. Schobbens.
Model-checking access control policies. In Proceedings
of the 7th Information Security Conference (ISC),
pages 219–230, 2004.

[7] T. hoad and J. Zobel. Methods for identifying
versioned and plagiarized documents. Journal of the
American Society for Information Science and
Technology, 54(3):203–215, 2003.

[8] M. Koch, L. V. Mancini, and F. P.-Presicce. On the
specification and evolution of access control policies.
In Proceedings of the 6th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages
121–130, 2001.

[9] E. Lupu and M. Sloman. Conflicts in policy-based
distributed systems management. IEEE Transactions
on Software Engineering (TSE), 25(6):852–869, 1999.

[10] P. Mazzoleni, E. Bertino, and B. Crispo. Xacml policy
integration algorithms. In Proceedings of the 11th
ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 223–232, 2006.

[11] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In Proceedings of the
18th International Conference on Data Engineering
(ICDE), pages 117–128, 2002.

[12] D. Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and
J. Zobel. Similarity measures for tracking information
flow. In Proceedings of the 14th ACM international
conference on Information and knowledge
management (CIKM), pages 517–524, 2005.

[13] T. Milo and S. Zohar. Using schema matching to
simplify heterogeneous data translation. In Proceedings
of the 24th International Conference of Very Large
Data Bases (VLDB), pages 122–133, 24–27 1998.

[14] J. D. Moffett and M. S. Sloman. Policy conflict
analysis in distributed system management. Journal of
Organizational Computing, 1993.

[15] T. Moses. Extensible access control markup language
(xacml) version 1.0. Technical report, OASIS, 2003.

[16] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. The International
Journal on Very Large Data Bases (VLDB Journal),
10(4):334 – 350, 2001.

[17] A. Schaad, J. D. Moffett, and J. Jacob. The role-based
access control system of a european bank: a case
study and discussion. In Proceedings of the 6th ACM
Symposium on Access Control Models and
Technologies (SACMAT), pages 3–9, 2001.

[18] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating
access control policies through model checking. In
Proceedings of the 8th Information Security
Conference (ISC), pages 446–460, 2005.

