
Conditional Privacy-Aware Role Based Access Control

Qun Ni1, Dan Lin1, Elisa Bertino1, and Jorge Lobo2

1 Department of Computer Science, Purdue University, W. Lafayette, IN 47907, USA
Email: {ni, lindan, bertino}@cs.purdue.edu

2 IBM Watson Research Center, Hawthorne, NY 10598, USA
Email: jlobo@us.ibm.com

Abstract. Privacy is considered critical for all organizations needing to manage individual
related information. As such, there is an increasing need for access control models which
can adequately support the specification and enforcement of privacy policies. In this paper,
we propose a model, referred to as Conditional Privacy-aware Role Based Access Control
(P-RBAC), which supports expressive condition languages and flexible relations among per-
mission assignments for more complex privacy policies. Efficient algorithms for detecting con-
flicts, redundancies, and indeterminism for a set of permission assignments are presented. In
the paper we also extend Conditional P-RBAC to Universal P-RBAC by taking into account
hierarchical relations among roles, data and purposes. In comparison with other approaches,
such as P3P, EPAL, and XACML, our work has achieved both expressiveness and efficiency.

1 Introduction

Privacy is today a key issue in information technology (IT)[24] and has received increasing atten-
tion from consumers, stakeholders, and legislators. Legislative acts, such as the Health Insurance
Portability and Accountability Act (HIPAA) [27] for healthcare and the Gramm Leach Bliley Act
(GLBA)[28] for financial institutions, require enterprises to protect the privacy of their customers.
To address privacy, enterprises have adopted various strategies to protect customer data and to
communicate their privacy policies to customers, such as publishing privacy policies on websites [2]
possibly based on P3P, or incorporating privacy seal programs (e.g. TRUSTe [25], ESRB, BBBOn-
line, CPAWebTrust). Those approaches however cannot truly safeguard consumers because they do
not address how consumer personal data is actually handled after it is collected. Enterprises’ actual
practices might intentionally or unintentionally violate the privacy policies published at their web-
sites. Privacy protection can only be achieved by enforcing privacy policies within an enterprise’s
online and offline data processing systems. Therefore enforceability of privacy policies is the key to
a solution for privacy protection.

Conventional access models, such as Mandatory Access Control (MAC) and Discretionary Access
Control (DAC), are not designed to enforce privacy policies and barely meet the requirements
of privacy protection [8]. However, existing access control technology can be used as a starting
point for managing personal identifiable information in a trustworthy fashion [20]. A language used
for privacy policies must be the same as or integrated with the language used for access control
policies, because both types of policy usually control access to the same resources and should not
conflict with one another [3]. Under this promise, we have proposed a family of Privacy-aware
Role Based Access Control (P-RBAC) models (see Figure 1) [17] that naturally extend classical
RBAC models [7, 23] to support privacy policies. Due to the complexity and variety of privacy
policies and privacy requirements from different organizations, we employ a “Divide and Conquer”

Core P-RBAC

Hierarchical P-RBAC Conditional P-RBAC

Universal P-RBAC

Fig. 1. A family of conceptual P-RBAC models

methodology. That is, the models in our P-RBAC family are designed to meet different levels of
requirements and handle different problems. The P-RBAC family includes four models: Core P-
RBAC, Hierarchical P-RBAC, Conditional P-RBAC and Universal P-RBAC. Core P-RBAC is the
basic model and is able to directly represent privacy-crucial information, such as purpose of data
use and obligations. However, although Core P-RBAC can be used to describe commonly used
public privacy policies and some acts, the limited expressiveness of its condition language makes it
not suitable for representing internally enforceable privacy policies for large scale enterprises and/or
complex applications. Specifically, Core P-RBAC has the following limitations. First, Core P-RBAC
only supports equality constraints on context variables in finite domains. Second, conditions are
restricted to conjunctions of atomic formulas. Third, it only supports one type of relation, that we
refer to as AND, among different permission assignments. The type of relation adopted by a set of
permission assignments is crucial in determining which obligations need to be executed and which
conditions have to be meet when several permissions may apply to the same request3.

In this paper, we address the aforementioned shortcomings by developing two advanced models,
the Conditional P-RBAC and the Universal P-RBAC. Conditional P-RBAC supports more expres-
sive condition languages and more flexible relations between permission assignments. Moreover,
we extend the limited analysis operation in [17] to redundancy check, indeterministic obligation
enforcement check, conflict check and coverage queries. Universal P-RBAC adds the concept of
hierarchy to Conditional P-RBAC, and it is thus able to support more complex requirements. To
summarize, our current work has the following five major differences when compared to existing
work: 1) Domains, atomic conditions, and relations among permission assignments are carefully
crafted to meet the most demanding needs from privacy polices while keeping the complexity of
policy analysis tractable; 2) Special structures are proposed to process obligations appearing in
multiple permission assignments that can simultaneously apply; 3) Indeterminism in obligation en-
forcement among policies is identified and a solution is proposed; and 4) Efficient algorithms for
detecting conflicts, indeterminism and redundancies of a new permission assignment against all
existing permission assignments4 are presented.

2 A Summary of Core P-RBAC

Core P-RBAC [17] is the foundation of the P-RBAC family models. It includes seven sets of enti-
ties: Users(U), Roles(R), Data(D), Actions(A), Purposes(P), Obligations(O), and Conditions (C)
expressed by a customized language, referred to as LC0. A user in the Core P-RBAC model is a

3 In standard policy languages, such as EPAL[10] and XACML[18], the relations between rules are not
clearly defined. In order to handle possible interactions or conflicts between rules, EPAL and XACML
adopt a simple approach: making only one rule applicable and simply ignoring all other rules. In contrast,
relations between permission assignments in P-RBAC models are explicitly defined.

4 The significance of comparing a new permission assignment against all pre-existing assignments simulta-
neously as opposed to pair-wisely is elaborated in Section 4.1

human being, and a role represents a job function or job title within the organization with some
associated semantics regarding the authority and responsibility conferred on a member of the role.
Data in P-RBAC means any information relating to an identified or identifiable individual. An
action is an executable image of a program, which upon invocation executes some function for the
user. The types of action and data objects that P-RBAC controls depend on the type of system in
which they are deployed.

The motivations for introducing Purposes, Conditions, and Obligations in Core P-RBAC origi-
nate from OECD Guidelines [19] on the Protection of Privacy and Transborder Flows of Personal
Data, current privacy laws in the United States, and public privacy policies of some well-known
organizations. The OECD guidelines are, to the best of our knowledge, the most well-known set
of private information protection principles, on which many other guidelines, data-protection laws,
and public privacy policies are based. Purposes which are bound to actions on data in Core P-RBAC
directly reflect the OECD Data Quality Principle, Purpose Specification Principle, and Use Limi-
tation Principle. Purposes are widely used for specifying privacy rules in legislative acts and actual
public policies. Obligations, that is, actions to be performed after an action has been executed on
data objects, are also part of many privacy policies. Conditions, that is, prerequisites to be met
before any action can be executed, are frequent components of privacy policies too.

Core P-RBAC directly models the above notions. In Core P-RBAC, as in classical RBAC,
permissions are assigned to roles and users obtain such permissions by being assigned to roles. The
distinctive feature of Core P-RBAC lies in the complex structure of privacy permissions, which
reflects the highly structured ways of expressing privacy rules to represent the essences of OECD
principles and Privacy acts. Hence, aside from the data and the action to be performed on it, a
privacy permission explicitly states the intended purpose of the action along with the conditions
under which the permission can be granted and the obligations that are to be finally performed.
Conditions are represented by conjunction of equality constraints over context variables, which
record privacy-relevant requirements taken into account when enforcing privacy permissions. The
following definition introduces Core P-RBAC. We refer the readers to [17] for additional details.

Definition 1. The Core P-RBAC model is composed of the following components:
– A set U of users, a set R of roles, a set D of data, a set P of purposes, a set A of actions, a

set O of obligations, and a condition language LC0.
– The set of Privacy-sensitive Data Permission PDP = {(a, d, p, c, o)| a ∈ A, d ∈ D, p ∈

P, c is an expression of LC0, o ∈ P(O)}, where P(O) denotes the powerset of O.
– User Assignment UA ⊆ U × R, a many-to-many mapping user to role assignment relation.
– Privacy-sensitive Data Permission Assignment PDPA ⊆ R×PDP , a many-to-many mapping

privacy-sensitive data permission to role assignment relation. �

For simplicity, we use (r, a, d, p, c, o) to denote a permission assignment in the rest of the paper.

3 Conditional P-RBAC

A major shortcoming of Core P-RBAC is the limited expressive power of its condition language LC0.
For example, LC0 is not able to express conditions like (DataUser=“Alice”) OR (DataUser=“Bob”)
because it only supports conjunction as logical operator. LC0 cannot deal with conditions like (8am
< currentT ime < 5pm) either because it only supports equality comparisons.

However, enhancing the expressiveness may result in a condition language which is not tractable.
In particular, to determine whether a condition in a permission assignment can be satisfied is

essentially the classic NP-complete satisfiability problem (SAT) where only a few classes of formulae
are tractable. Therefore, for practical purposes, we divide our problem into two subcases, a tractable
case and an intractable case, by carefully investigating commonly used conditions in privacy policies.
Correspondingly, we define Conditional P-RBAC as characterized by a two-fold solution as follows.
– We define a more expressive condition language LC1 and introduce the concept of simple per-

mission assignment set, for which SAT is tractable.
– We define a fully expressive condition language LC2 and introduce the concept of advanced

permission assignment set, for which SAT is theoretically intractable but remains tractable in
practice given a reasonable assumption.

3.1 Context Variable Domains and Atomic Conditions

Definition 2. In both LC1 and LC2, conditions are expressed against context variables in the
following domains with respective relational operators that have the standard semantics:
– Integer domain I with operators <,≤, =, �=, >,≥.
– String domain S with operators <,≤, =, �=, >,≥.
– Real domain R with operators <,≤, =, �=, >,≥.
– Date domain D with operators <,≤, =, �=, >,≥.
– Time domain T with operators <,≤, =, �=, >,≥.
– A finite tree domain H with operators <,≤, =, �=, >,≥,≺,�,	,
,�, ��.
– A finite partially ordered discrete domain PO with operators <,≤, =, �=, >,≥,≺,�,	,
,�, ��.
– A finite unordered discrete domain UD with operators =, �=. �

These domains are commonly used in various kinds of policies including privacy policies. For
example, X.500 directories and XML data are in the tree domain; some security labels and role
hierarchies are in the partially ordered discrete domain; Boolean values and data subject’s consent
are in the unordered discrete domain. Most relational operators are easily understood and thus here
we only explain some relational operators used in the tree domain and the partially ordered domain.
Let x be a context variable in a tree domain Tx and let v ∈ Tx, x < v denotes that x is a descendant
of v, while x ≺ v means x is a direct descendent(child) of v. Similarly, the operator > represents
the ancestor relation while 	 describes the direct ancestor (parent) relation. The operators � and
�� represent comparability and non-comparability tests between domain elements respectively.

Definition 3. The atomic conditions of LC1 and LC2 are defined as follows:
– Let Dx be one of the domains introduced by Definition 2; let xi and xj be variables in Dx; let

v be a constant in Dx; let opr ∈ {=, �=}; then xi opr v is an atomic condition, referred to as
equality atomic condition.

– Let Dx be one of the domains introduced by Definition 2 different from domain UD; let xi and
xj be variables in Dx; let v be a constant in Dx; let opr ∈ {<,≤, >,≥}; then xi opr v is an
atomic condition, referred to as order atomic condition.

– Let Dx be domain H or domain PO; let xi and xj be variables in Dx; let v be a constant in
Dx; let opr ∈ {≺,�,	,
,�, ��}; then xi opr v is an atomic condition, referred to as hierarchy
atomic condition. �

Note that for all domains in Definition 2, except UD, the order atomic condition is more expres-
sive than the equality atomic condition because the equality operation is just a special case of order
relation. One typical class of condition in policies are range condition such as x ∈ (0, 13]. Ranges

can be easily represented by two order atomic conditions. We also do not define negation of atomic
conditions in the totally ordered domain (i.e. integer, real, string, date, and time) as atomic condi-
tions because it can be easily expressed by using corresponding negative relational operators. For
example, a negation of atomic condition (not OwnerAge ≤ 13) can be represented as (OwnerAge
> 13).

3.2 The Condition Language LC1 and Simple Permission Assignment Sets

Given the definition of atomic conditions, we now define LC1 conditions.

Definition 4. The conditions of LC1 are defined as follows:
– An atomic condition is a condition of LC1.
– Let ci and cj be conditions of LC1; then ci ∧ cj

5 is a condition of LC1. �

When dealing with multiple permission assignments including conditions and obligations, it is
fundamental to understand the semantics associated with the permission when multiple assign-
ments can be applied. For this purpose, we introduce two possible relations AND and OR. An
AND relation for a set of permission assignments indicates that an access request related to these
permission assignments will be authorized only if all conditions in these permission assignments
are satisfied and all obligations are fulfilled thereafter. Alternatively, an OR relation for a set of
permission assignments indicates that an access request related to these permission assignments
will be authorized if one of the conditions in these permission assignments is satisfied and only
the corresponding obligations in that permission assignment are fulfilled thereafter (more details
about AND and OR relation are presented in Section 4.1). To handle AND and OR relations, we
introduce the concept of Simple Permission Assignment Sets (SPAS).

Definition 5.
– An atomic simple permission assignment set is a set {PA1, PA2, ..., PAk}, such that the relation

among the permission assignments in the set is AND.
– Let SPAS1, ..., SPASn be atomic SPASs, then {SPAS1, ..., SPASn} is a non-atomic SPAS,

if (i) the relation among atomic SPAS’s is OR; and (ii)SPASi∩SPASj = ∅, i, j ∈ [1..n]∧i �= j.
– An atomic SPAS is a SPAS; a non-atomic SPAS is a SPAS. �

Many permission can be expressed using SPAS. e.g., SPAS allows different groups or departments
to define their own permission assignments in one or several permission sets. Also, SPAS helps to
specify the relation OR between permission assignments. Organizational privacy policies can then
be represented by a finite number of atomic SPASs. Consider the following example: “Marketing
employee can only access customers’ email address for promotion if the customers are not under
13 and allow them to do so. If they are under 13, they need to get their parents’ consent”. The
corresponding SPAS is as follows.

Example 1. SPAS ≡ {SPAS1, SPAS2}; SPAS1 ≡ {(MarketingEmployee, Read, EmailAddress,
Promotion, OwnerAge > 13 ∧ OwnerConsent=Yes, ∅)}; SPAS2 ≡ {(MarketingEmployee, Read,
EmailAddress, Promotion, OwnerAge ≤ 13 ∧ ParentalConsent=Yes, ∅)}. �

The rationale behind LC1 and SPAS is to provide good expressiveness while guaranteeing the
efficient generation of disjunctive OR forms by permission assignment normalization. Disjunctive
normal form and permission assignment normalization ensure the efficiency of our analysis algo-
rithms. We will detail these concepts and analysis in Section 4.
5 To avoid ambiguities, Boolean operators ∧ and ∨ will be used in predicate conditions, while AND and

OR will be used to denote relations between permission assignments

3.3 The Condition Language LC2 and Advanced Permission Assignment Sets

Some applications may require the ability to specify more complex conditions that need both
Boolean operators ∧ and ∨. For example, the condition (OwnerAge ≤ 13 ∧ ParentalConsent =
Y es) ∨ (OwnerAge > 13 ∧ OwnerConsent = Y es). We define the language LC2 to cover these
cases.

Definition 6. The conditions of LC2 are defined as follows:

– An atomic condition is a condition of LC2.
– Let ci and cj be conditions of LC2; then ci ∧ cj and ci ∨ cj are conditions of LC2. �

Along with LC2, an Advanced Permission Assignment Set(APAS) is defined to support the
representation of different relations among permission assignments.

Definition 7. Let S be a set of all possible permission assignments.

– An atomic APAS is a tuple N [rel, pas, ∅], where N is an identifier, rel ∈{AND, OR} and pas
is a finite subset of S.

– Let rel ∈{AND,OR}, pas is a finite subset of S, and apas be a set of APAS; then a N [rel, pas, apas]
is an APAS. �

Example 2. Let PA1, PA2, ..., PA14 be permission assignments. An example APAS is APAS1 [
AND, {PA1, PA2}, {APAS2 [AND, {PA3, PA4}, {APAS3 [OR, {PA5, PA6}, ∅], APAS4 [OR,
{PA7, PA8}, ∅]}], APAS5 [OR, {PA9, PA10}, {APAS6 [AND, {PA11, PA12}, ∅], APAS7 [OR,
{PA13, PA14}, ∅]}]}], which can be represented as a tree(see Figure 2). �

APAS1{AND {PA1,PA2},{ APAS2, APAS5}}

APAS2{AND {PA3,PA4},{ APAS3, APAS4}} APAS5{OR {PA9,PA10},{ APAS6, APAS7}}

APAS3{OR {PA5,PA6}, } APAS4{AND {PA7,PA8}, } APAS6{AND {PA11,PA12}, } APAS7{OR {PA13,PA14}, }

Fig. 2. An APAS tree

The advantage of APAS is that it provides a natural and flexible way to help administrate differ-
ent levels of permission assignments. Example 2 could represent a company with two departments
D1 and D2. D1 has teams T1 and T2, and D2 has teams T3 and T4. We may allow a senior privacy
officer to administrate the whole APAS tree, and departmental privacy officers to maintain APAS2

and APAS5 respectively. If necessary, a privacy officer can also be assigned to several APAS nodes
in the tree.

4 Consistency Checking in Conditional P-RBAC

In P-RBAC, when a new permission assignment is entered, the privacy officer needs to check how
the new permission assignment interacts with existing ones. We refer to such task as consistency
checking of permission assignments.

Definition 8. A new permission assignment is consistent with pre-existing permission assignments
if none of the following conditions hold:

– Redundancy. A permission assignment x is redundant with respect to a group of permission
assignments Y ≡ {y1, ..., yn}(n ≥ 1) if the addition of x does not affect the behavior of the
system governed by Y .

– Conflict. A permission assignment x conflicts with a group of permission assignments Y ≡
{y1, ..., yn}(n ≥ 1) if the addition of x results in that one action of the system governed by Y
can be never carried out or there exists a conflict among new obligations.

– Indeterminism. A permission assignment x results in indetermination with respect to a group
of permission assignments Y ≡ {y1, ..., yn}(n ≥ 1) if the addition of x results in that the
enforcement of obligations governed by Y becomes nondeterministic. �

Here the unchanged behavior in the definition of redundancy means given any data request, the
system will make the same decision and execute the same set of obligations. Conflict happens if (i)
the new condition created after the addition of x cannot be satisfied; or (ii) the new obligations
introduced by x need to be added to a set of obligations of a permission assignment and the new
obligations conflict with the set. Indeterminism arises because of the relations between conditions
and obligations in privacy policies. For example, if there is a permission assignment (Marketing −
Employee, read, EmailAddress, promotion, ownerage ≤ 13, notify(byPhone, optout)), a new
permission assignment(MarketingEmployee, read, EmailAddress, promotion, ownerage ≤ 19,
notify(byEmail)) that has OR relation with respect to the original permission assignment results
in indeterministic obligation enforcement. For a kid who is ten, enforcement of notify(byPhone,
optout) or notify(byEmail) is undetermined to system. Any policy language that supports both
pre-conditions and post-actions may suffer from such a problem.

Based on the result of consistency checking, the privacy officer will accept or reject new per-
mission assignments, resolve potential conflicts, or mark certain permission assignments as being
inactive. Consistency checking can also include coverage queries. In some cases, the privacy officer
may want to know if the permission assignments have been defined for a certain range of context
variables. For example, a privacy officer may want to know if third parties can access purchase
order information for research purposes between 19:00 and 22:00. In what follows, we present a
normalization technique to carry out the above analysis in Conditional P-RBAC.

4.1 Permission Assignment Normalization

In Conditional P-RBAC, permission assignments are maintained as a SPAS or an APAS tree.
Directly using such a set or tree structure to answer data requests or to detect whether there exists
a conflict between a new permission assignment and the pre-existing permission assignments, may
not be efficient because sometimes the entire set or the entire tree need to be traversed to find an
answer. Therefore, it would be helpful to translate a SPAS (an APAS tree) into a form better suited
for analysis; we call such a translation permission assignment normalization.

Observe that in a group of permission assignments, either in a SPAS or in an APAS, two
permission assignments may interact with each other only when they share the same role, action,
data and purpose. Otherwise, the permission assignments are incomparable6. Therefore, the goal

6 The statement is not true if role hierarchies, data hierarchies and purpose hierarchies are considered.
Such situation is discussed in Universal P-RBAC.

of permission assignment normalization is to generate a new permission assignment set such that
each combination of (role, action, data, purpose) only appears once in the set.

The benefit of the normalization for answering data access requests is obvious. Now the sys-
tem can give an answer within constant time by using a hashing function H(r, a, d, p) to locate
the permission assignment being queried. The same hashing function can be used to improve the
efficiency of the consistency checking. It is worth noting that the normalization is extremely helpful
in determining the relation between a new permission assignment and a group of permission assign-
ments because a series of related permission assignments will become one permission assignment
after the normalization. It is not sufficient to compare a new permission assignment against each
existing permission assignment. For example, let D be a finite domain {a, b, c} and x be a context
variable on D, let P1 and P2 be two existing permission assignments with conditions x �= a and
x �= b respectively, let P3 be the new permission assignments with condition x �= c, and we assume
the other components of P1, P2 and P3 are the same and they have an AND relation. Obviously
P3 does not conflict individually with P1 or P2, but conflicts with the integration of P1 and P2.

Definition 9. Let S and S′ be two permission assignment sets, we say the behavior of S′ is equiv-
alent to that of S if for any data access request, S′ yields the same authorization decision and
performs the same obligations as S. �

The normalization is challenging because we must guarantee that the behavior of a normalized
permission assignment is equivalent to the original assignments. The difficulty lies in the analysis
of conditions and obligations. In the following, we discuss the procedures for normalizing SPAS and
APAS separately.

Permission Assignment Normalization on SPAS To facilitate permission assignment nor-
malization on SPAS, we first introduce the following structure.

Definition 10. Let R be a set of roles, D be a set of data, P be a set of purposes, A be a set of
actions, O be a set of obligations in Conditional P-RBAC; a condition-obligation structure is a set
of tuples of the form (c, o) where c is a condition of LC1 and o ∈ P(O); a normalized permission
assignment is a 5-tuple (r, a, d, p, co) where r ∈ R, a ∈ A, d ∈ D, p ∈ P , and co is a condition-
obligation structure. �

The normalization algorithm for SPAS consists of two steps. First, for permission assignments
with the same (role, action, data, purpose) in the same SPAS, we combine their conditions using
the Boolean operator ∧, and associate the new condition with the UNION of corresponding obliga-
tions. Second, we construct the condition-obligation structure for permission assignments with the
same (role, action, data, purpose) in different SPASs. Given a normalized permission assignment
(r, a, d, p, co) where co = {(ci, oi) | 0 < i < k} and k is the number of atomic SPASs in the SPAS,
if a single ci is satisfied, the data access request is allowed and the corresponding obligations in oi

are performed later. The pseudo codes of the algorithms are shown in Figures 3 and 4. The time
complexity of each algorithm is O(n) assuming the number of permission assignments is n. We use
Example 3 to illustrate ideas in the algorithms.

Example 3. Consider a SPAS containing the following atomic SPASs:
SPAS1((r11, a11, d11, p11, c11, o11), (r12, a12, d12, p12, c12, o12), (r13, a13, d13, p13, c13, o13)),
SPAS2((r21, a21, d21, p21, c21, o21), (r22, a22, d22, p22, c22, o22), (r23, a23, d23, p23, c23, o23)),
SPAS3((r31, a31, d31, p31, c31, o31), (r32, a32, d32, p32, c32, o32), (r33, a33, d33, p33, c33, o33)).

Algorithm CO-Normalization(NSPAS)
Input: NSPAS is a non-atomic SPAS with respect to the same (role, action, data, purpose)
1. NPAL← nil; // NPAL is a normalized permission assignment list
2. ConditionObligationStructure← ∅;
3. for each atomic SPAS in the NSPAS
4. (c, o)← (true, ∅);
5. for each permission assignment (r′, a′, d′, p′, c′, o′) in SPAS
6. (c, o)← (c ∧ c′, o ∪ o′);
7. ConditionObligationStructure ← ConditionObligationStructure ∪ (c, o);
8. NPAL← List.CONS((role, action, data, purpose,ConditionObligationStructure), NPAL);
9. return NPAL.

Fig. 3. CO-Normalization algorithm

Algorithm SPAS-Normalization(NSPAS)
Input : NSPAS is a non-atomic SPAS
1. NPAL← nil; // NPAL is a normalized permission assignment list;
2. divide NSPAS into {NSPAS1, NSPAS2, ..., NSPASn},

where NSPASi consists of permission assignment with same (role, action, data, purpose);
3. for i← 1 to n
4. NPAL← List.CONS(CO-Normalization(NSPASi),NPAL);
5. return NPAL.

Fig. 4. SPAS-Normalization algorithm

We assume (r11, a11, d11, p11) = (r21, a21, d21, p21) = (r22, a22, d22, p22) = (r31, a31, d31, p31) = (r32,
a32, d32, p32) = (r33, a33, d33, p33).

Suppose there is a data request DR concerning (r11, a11, d11, p11). Several possible cases exist
according to the definition of SPAS:
– If DR satisfies c11, the request will be authorized and obligations in o11 will be performed.
– If DR satisfies c21 ∧ c22, then the request will be authorized and obligations in o21 ∪ o22 will be

performed. The intuition of the union of obligations is as follows:
• Since DR satisfies c21 in permission (r21, a21, d21, p21, c21, o21), obligations in o21 should be

performed.
• Since DR satisfies c22 in permission (r22, a22, d22, p22, c22, o22), obligations in o22 should be

performed.
• Duplicated obligations should be performed only once because generally several enforce-

ments of a same obligation do not make sense.
– If DR satisfies c31∧c32∧c33, then the request will be authorized and obligations in o31∪o32∪o33

will be performed.
– Otherwise, the request will be denied.

Then, the normalized permission assignment set is :(r′, a′, d′, p′, co′), (r12, a12, d12, p12, {(c12, o12)}),
(r13, a13, d13, p13, {(c13, o13)}), (r23, a23, d23, p23, {(c23, o23)}), where r′ = r11, a′ = a11, d′ = d11,
p′ = p11, and co′ = {(c11, o11), (c21 ∧ c22, o21 ∪ o22), (c31 ∧ c32 ∧ c32, o31 ∪ o32 ∪ o32)}. �

Based on the definition of condition-obligation structure, it is easy to prove the following lemma:

Lemma 1. Algorithm CO-Normalization and SPAS-Normalization guarantee that the behavior
of the normalized permission assignment set is equivalent to that of the original simple permission
assignment set. �

Permission Assignment Normalization on APAS The main difference between SPAS and
APAS is the use of Boolean relation ∨ between conditions and the relation OR between permission
assignments. However, we can still apply the same idea underlying the normalization of a SPAS to
normalize an APAS tree because as in SPAS, permission assignments with different (role, action,
data, purpose) in an APAS tree do not interfere with one another. The main challenge is again the
processing of obligations. In order to solve the problem, we introduce a new concept, referred to as
condition-obligation binding. The idea behind this concept is that the fact that the obligations
must be fulfilled depends on the conditions satisfied by a data access request.

Definition 11. Let c be a condition expressed according to LC2, O be a set of obligations and
o ∈ P(O). [c, o] is a condition-obligation binding. If [ci, oi] and [cj , oj] are condition-obligation
bindings, [ci, oi]∧ [cj, oj] and [ci, oi]∨ [cj , oj] are condition-obligation bindings too. Further, [c, o] is
called a normal condition-obligation binding if c is a condition in LC1 (i.e. a conjunction of atomic
conditions). �

Lemma 2. A condition-obligation binding supports the following transformations:

– [ci ∨ cj , o] ⇔ [ci, o] ∨ [cj , o].
– [ci ∧ (cj ∨ ck), o] ⇔ [ci ∧ cj , o] ∨ [ci ∧ ck, o].
– [ci, oi] ∧ [cj , oj] ⇔ [ci ∧ cj , oi ∪ oj]. �

The normalization algorithm for an APAS tree is as follows. First, we transform all permission
assignments in the APAS tree into a new form (r, a, d, p, [c, o]). Second, we remove all relation oper-
ators and sub-trees by moving relation operators into condition-obligation bindings. For example,
given (r, a, d, p, [ci, oi]) OR (r, a, d, p, [cj , oj]), we have (r, a, d, p, [ci, oi] ∨[cj , oj]). After this step, we
obtain a set of permission assignments in the form of (r, a, d, p,�n

i=1[ci, oi]) where � ∈ {∧,∨}. Next,
we convert �n

i=1[ci, oi] into ∨m
j=1[cj , oj], where [cj , oj] is a normal condition-obligation binding, by

using the transformations given in Definition 11. Finally, we transform ∨m
j=1[cj , oj] into a condition-

obligation structure and generate a set of normalized permission assignments. The pseudo code is
omitted due to space constraints. The following example illustrates the algorithm.

Example 4. Consider Example 2. Assuming that APAS1 contains the following permission assign-
ments: PA3 = (r3, a3, d3, p3, c3, o3), PA8 = (r8, a8, d8, p8, c8, o8) PA9 = (r9, a9, d9, p9, c9, o9),
PA13 = (r13, a13, d13, p13, c13, o13) where r3 = r8 = r9 = r13, a3 = a8 = a9 = a13, d3 = d8 = d9 =
d13, p3 = p8 = p9 = p13. The following steps are executed by the algorithm.

Step 1: Group permission assignments according to (role, action, data, purpose) and construct
condition-obligation bindings, where we have:
PA3 = (r3, a3, d3, p3, [c3, o3]), PA8 = (r8, a8, d8, p8, [c8, o8])
PA9 = (r9, a9, d9, p9, [c9, o9]), PA13 = (r13, a13, d13, p13, [c13, o13])

Step 2: Flatten the APAS tree by moving the relational operators into the permission assign-
ments. We obtain NPA′=(r3, a3, d3, p3, [c3, o3] ∧[c8, o8] ∧([c9, o9] ∨[c13, o13])). We assume that c3,
c8, c9 and c13 are atomic conditions (a more general case of conditions is shown in our technical
report).

Step 3: Transform the condition-obligation bindings in NPA′ into a DNF as shown below.
[c3, o3] ∧ [c8, o8] ∧ ([c9, o9] ∨ [c13, o13]) ⇒ [c3 ∧ c8 ∧ c9, o3 ∪ o8 ∪ o9] ∨ [c3 ∧ c8 ∧ c13, o3 ∪ o8 ∪ o13].
Step 4: Construct the condition-obligation structure and generate the normalized permission

assignment: NPA = (r3, a3, d3, p3, {(c3 ∧ c8 ∧ c9, o3 ∪ o8 ∪ o9), (c3 ∧ c8 ∧ c13, o3 ∪ o8 ∪ o13)}) �

It is worth noting that the disjunctive normal form transformation for the condition-obligation
bindings may be exponential to the number of atomic conditions. However, such situation rarely
happens in practice due to the following observations. First, in real privacy policies, for each flat-
tened permission assignment, the number of atomic conditions in the conditions is usually very
small (e.g. ≤ 10). Second, the APAS-Normalization is linear with respect to the number of permis-
sion assignments, which has no direct relation with the total number of context variables. In other
words, even if the total number of context variables were tens of thousands, the running time of
our APAS-Normalization will still be linear in the total number of permission assignments.

4.2 Permission Assignment Maintenance

In conditional P-RBAC, we guarantee that there is no redundancy, indeterminism or conflict be-
tween a new permission and a pre-existing permission assignment set by taking the following steps
when inserting a new permission assignment is issued.

1. Redundancy checking. If no error occurs, continue.
2. Conflict detection. If no error occurs, continue.
3. Indeterminism checking. If no error occurs, insert the new permission assignment.

Definition 12. Let NPAL be a normalized permission assignment set based on either a SPAS or
an APAS set, PA′ be a new permission assignment, NPA is the normalized permission assignment
which have the same (role, action, data, purpose) as PA′, and NPA′ is the normalized permission
assignments of the addition of PA′ in the pre-existing permission assignments.

– If either a condition of NPA′ is not satisfiable or an obligation conflict is detected, we say PA′

strongly conflicts with NPAL.
– Let CO = {(c1, o1), ..., (cn, on)} be a condition-obligation structure of NPA′. If a ci, for i ∈

[1, n], is not satisfiable, we say PA′ weakly conflicts7 with NPAL.
– If the context variable domain of NPA is the same as that of NPA′ and the corresponding

obligation sets are equivalent, we say PA′ is redundant with respect to NPAL.
– Let CO = {(c1, o1), ..., (cn, on)} be a condition-obligation structure of NPA′. If there exist two

tuple (ci, oi), (cj , oj) ∈ CO such that ci ∧ cj is satisfiable and oi �= oj, we say PA′ causes
indeterminism of obligation enforcement in NPAL. �

The coverage query can be very generic and depends on requirements and their implementations,
therefore no formal definition is given here. The general case of coverage queries is that given
some constraints on role, data, purpose, and context variables, the system checks whether they are
satisfiable or unsatisfiable based on a permission assignment set.

Given the definition of redundancy, strong conflict, weak conflict, and indeterminism, our per-
mission assignment normalization algorithms, and the domain elimination algorithms discussed in
[1], the problems of redundancy checking, indeterminism checking, conflict detection and coverage
queries are converted into a tractable satisfiability problem. We do not include more details due to
space limitation.

7 Weak conflict may indicate potential problems introduced by a new permission assignment because it
causes some (ci, oi) to be totally useless.

5 Universal P-RBAC

Universal P-RBAC combines Hierarchical P-RBAC and Conditional P-RBAC, and inherits both
their features. Such integration of Hierarchical P-RBAC and Conditional P-RBAC supports the
specification of more complex relations between different permission assignments, which in turn
raises several issues with respect to consistency check.

5.1 Hierachical P-RBAC

Hierarchical P-RBAC provides role hierarchies (RH), data hierarchies (DH) and purpose hierarchies
(PH). Role hierarchies represent an important notion in RBAC [23, 7], which reflect organization’s
lines of authority and responsibility. Mathematically, role hierarchies are partial orders. The purpose
hierarchy is represented as a tree, where each purpose (except the root purpose) has exactly one
parent purpose and there are no cycles. A parent node represents a more general purpose than
its children nodes. Access for a parent purpose is allowed only when the access for all its children
purpose is allowed. Like the purpose hierarchy, the data hierarchy is also a tree structure. Access to
a parent data object is allowed only if access to all its children is allowed. Introducing the hierarchy
concept compacts permission assignments (e.g., permission assignments with different purposes may
be clustered providing all the child purposes are already covered), and also complicates consistency
check.

5.2 Interactions between Hierarchical P-RBAC and Conditional P-RBAC

As mentioned in previous section, inserting a new permission assignment requires checking redun-
dancy, conflict and indeterminism. When there is no hierarchy (in the Conditional P-RBAC), those
checks are carried out only on the permissions with the same (role, data, action, purpose) because
each role (data, action or purpose) is independent of any of other roles. Once we introduce a hi-
erarchy (in Universal P-RBAC), the situation becomes more complex. We now need to compare
permission assignments of different roles (data, or purpose) since potential interactions may exist
among these roles due to their hierarchical relations. To facilitate the discussion of such interactions,
let us assume a new permission assignment to be PAn =(rn, an, dn, pn, cn, on).

The process of issuing PAn includes two phases. The first phase checks if PAn causes any
redundancy, conflict or indeterminism problem against the existing permission assignment sets
of role rn, ra and rd, respectively, which is carried out in a temporary copy of existing permission
assignment sets. If PAn passes the check, the second phase will then update all influenced permission
assignments.

In the first phase, there are four steps. First, we “virtually” 8 insert PAn into current SPAS or
APAS. Let NPAn and NPA′

n be the normalized permission assignments containing (rn, an, dn, pn)
before and after the insertion respectively. If a strong or weak conflict or indeterminism is detected
during the construction of NPA′

n, or NPA′
n is redundant compared to NPAn, the processing stops.

Otherwise, we proceed to the second step which handles the effect of the data hierarchy. From here,
our discussion is based on the normalized permission assignment set after the virtual insertion
of PAn. We compare NPA′

n = {(cn1 ,on1), · · ·, (cni ,oni)} with every such permission assignment
NPA′

x = (rn, an, dx, pn, {(cx1 ,ox1), · · ·, (cxj ,oxj)}), where dx is a descendant or an ancestor of

8 The word “virtually” means the operation does not have any real effect on the system.

dn, denoted as dx � dn and dx
 dn respectively. If NPA′
n provides broader authorizations than

its previous version NPAn, we need to correspondingly increase the authorization on the data
which is a descendant of dn. The reason is that according to the definition of the data hierarchy,
if a user can access data dn under a certain condition, he should also be able to access data dx

(dx � dn) under the same condition. The increase of the authorization is achieved by combining the
condition-obligation bindings of NPA′

n and NPA′
x. Specifically, the new permission assignment for

dx is NPA′′
x = (rn, an, dx, pn, {(cx1 ,ox1), · · ·, (cxj ,oxj)}

⋃
{(cn1 ,on1), · · ·, (cni ,oni)}). During the

combination, we need to check if there exists indeterminism of obligation enforcement.
In the other case when NPA′

n is stricter than before, we need to check NPA′
x with dx
 dn.

If the solution domain of cx is covered by cn, no more changes are needed according to the same
reason above. Otherwise, it means that cx defines some situations which cannot be satisfied by cn. In
other words, there are some permissions authorized by NPA′

x but not authorized by NPA′
n, which

conflicts with the functionality of the data hierarchy. Therefore, we remove NPA′
x and dispatch its

permission to its child nodes except dn. For example, if dy is a child node of dx (dy �= dn), it will
receive a permission assignment PAy = (rn, an, dy , pn, {(cx1 ,ox1), · · ·, (cxj ,oxj)}). After that, we
need to normalize the permission assignment sets again.

Next, we consider the purpose hierarchy. The processing is omitted because the purpose hierar-
chy has the same structure as the data hierarchy.

The final step in the first phase is to propagate the changes to the ancestor roles of rn. The
basic rule is to guarantee that parent roles have all the permissions of their child roles. The specific
operation is as follows. If an updated permission assignment of rn is different from its previous
version, we need to replace the correspondingly inherited permission assignment for its parent roles
with the new one and renormalize permissions for its parents. After the normalization, if the parent
roles obtain different permissions, we repeat the procedure for the corresponding grandparent roles.
Note that these changes may be propagated all the way to the top of the role hierarchy.

All the permission assignments modified in the first phase are made in a temporary copy of
the original permission assignments because the process may stop at any time due to conflict,
indeterminism, or redundancy problems. We finally update all these changes to the system in the
second phase.

Our maintenance algorithm may look complicated. However, it is worth noting that the fre-
quency of policy changes (i.e. permission insertion) is much less than that of data requests. By
taking care of all possible issues during the insertion phase which needs to be executed only once,
we are then able to reduce response time for each data request.

6 Related Work

In this section, we compare our proposal to three proposals that are most closely related, that is
P3P[29], EPAL[10] and XACML [18]. P3P enables websites to express their privacy practices in a
standard format that can be retrieved automatically and interpreted easily by agents. However, P3P
is not able to describe complex conditions like the age constraint, and it is also not an enforceable
policy language. EPAL [4] is proposed to encode enterprise’s privacy-related data-handling policies
and practices, which can be imported and enforced by a privacy-enforcement system. XACML [18]
is a well known access control model based on XML. Its main goal is to provide an application
independent policy language which enables the use of arbitrary attributes in different types of
policies. Both EPAL and XACML aim at providing large flexibilities of writing policies, but leave
the policy analysis task to policy analyzers. For example, they use a very simple strategy to handle

conflicts among rules. That is, when multiple rules in one policy yield different decisions for a
same request, EPAL and XACML will simply choose the decision from one rule according to the
rule combining algorithm and ignore the effects of other rules. One of such strategies, i.e. first
applicable rule, may cause problems as discussed in [5]. In addition, obligation processing is rather
preliminary in both EPAL and XACML. Unlike existing approaches, our models achieve a balance
between expressiveness and tractability, and also guarantee that the insertion of a new policy will
not affect the consistency of existing policies.

Besides the policy languages, we are also aware of analysis tools for XACML policies, such as
[9, 14, 26]. Most of them simplify the analysis and focus on core functions only. It is not clear if they
can be easily extended to support analysis on the full functionality. Since they are orthogonal to
our work, we do not present the details here. In the definition of domain and atomic conditions, we
refer to work on constraint databases [12, 15, 21, 22]. Compared to other works on obligations[6, 11,
16], our idea on condition-obligation binding and indeterminism is new.

7 Conclusion

In this paper, we proposed Conditional P-RBAC and Universal P-RBAC for specifying complex
privacy policies. The key design criterion is to balance efficiency and expressiveness. The definition
of domains and atomic conditions are carefully chosen to reflect the wide needs for enforceable
privacy policies and to meet our efficiency goal, so does the design of condition languages and
permission assignment sets. We have taken into account the effect of hierarchical relations among
roles, data and purposes, which further enhance the expressiveness of our approach. As part of
future work, we plan to introduce a sticky policy paradigm[13] into P-RBAC and develop a formal
method to describe and manage obligations and to automatically detect possible conflicts between
obligations and between obligations and actions.

8 Acknowledgement

The work reported in this paper has been partially supported by IBM under the OCR project “Pri-
vacy and Security Policy Management”. Participants to this project are: Carnegie Mellon University,
IBM T.J. Watson Research Center, Purdue University.

References

1. D. Agrawal, J. Giles, K.-W. Lee, and J. Lobo. Policy ratification. In POLICY ’05: Proceedings of the
Sixth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’05),
pages 223–232, Stockholm Sweden, 2005. IEEE Computer Society.

2. Amazon.com. Amazon privacy notice. Available at http://www.amazon.com/exec/obidos/tg/browse/-
/468496/102-8997954-0573735.

3. A. H. Anderson. A comparison of two privacy policy languages: Epal and xacml. In SWS ’06: Proceedings
of the 3rd ACM workshop on Secure web services, pages 53–60, New York, NY, USA, 2006. ACM Press.

4. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise privacy autho-
rization language (epal 1.2). W3C Member Submission 10 November 2003. Available at
http://www.w3.org/Submission/EPAL/.

5. A. Barth, J. C. Mitchell, and J. Rosenstein. Conflict and combination in privacy policy languages. In
WPES ’04: Proceedings of the 2004 ACM workshop on Privacy in the electronic society, pages 45–46,
New York, NY, USA, 2004. ACM Press.

6. C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera. Obligation monitoring in policy management. In
POLICY ’02: Proceedings of the 3rd International Workshop on Policies for Distributed Systems and
Networks (POLICY’02), page 2, Washington, DC, USA, 2002. IEEE Computer Society.

7. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed nist standard for
role-based access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274, 2001.

8. S. Fischer-Hubner. IT-security and privacy: design and use of privacy-enhancing security mechanisms.
Springer-Verlag New York, Inc., New York, NY, USA, 2001.

9. K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and change-impact
analysis of access-control policies. In ICSE ’05: Proceedings of the 27th international conference on
Software engineering, pages 196–205, 2005.

10. IBM Zurich Research Laboratory,Switzerland. The enterprise privacy authorization language(epal 1.1).
Available at http://www.zurich.ibm.com/security/enterprise-privacy/epal/.

11. K. Irwin, T. Yu, and W. H. Winsborough. On the modeling and analysis of obligations. In CCS ’06:
Proceedings of the 13th ACM conference on Computer and communications security, pages 134–143,
New York, NY, USA, 2006. ACM Press.

12. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages (preliminary report).
In PODS ’90: Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 299–313, New York, NY, USA, 1990. ACM Press.

13. G. Karjoth, M. Schunter, and M. Waidner. Platform for enterprise privacy practices: Privacy-enabled
management of customer data. In Privacy Enhancing Technologies, pages 69–84, 2002.

14. V. Kolovski, J. Hendler, and B. Parsia. Formalizing xacml using defeasible description logics. Available
at http://www.mindswap.org/ kolovski/xacml tr.pdf.

15. N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust management languages.
In PADL ’03: Proceedings of the 5th International Symposium on Practical Aspects of Declarative
Languages, pages 58–73, London, UK, 2003. Springer-Verlag.

16. M. C. Mont and F. Beato. On parametric obligation policies: Enabling privacy-aware information lifecy-
cle management in enterprises. Tech Report HPL-2007-7, Trusted Systems Laboratory, HP Laboratories
Bristol. Available at http://www.hpl.hp.com/techreports/2007/HPL-2007-7.pdf.

17. Q. Ni, A. Trombetta, E. Bertino, and J. Lobo. Privcy aware role based access control. In SACMAT
’07: Proceedings of the 12th ACM symposium on Access control models and technologies, New York,
NY, USA, 2007. ACM Press.

18. OASIS. extensible access control markup language (xacml) 2.0. Available at http://www.oasis-
open.org/.

19. Organisation for Economic Co-operation and Development. Oecd guidelines on the protection of privacy
and transborder flows of personal data of 1980. Available at http://www.oecd.org/.

20. C. S. Powers. Privacy promises, access control, and privacy management. In ISEC ’02: Proceedings
of the Third International Symposium on Electronic Commerce, page 13, Washington, DC, USA, 2002.
IEEE Computer Society.

21. P. Z. Revesz. Constraint databases: A survey. In Selected Papers from a Workshop on Semantics in
Databases, pages 209–246, London, UK, 1998. Springer-Verlag.

22. P. Z. Revesz. Safe datalog queries with linear constraints. In CP ’98: Proceedings of the 4th International
Conference on Principles and Practice of Constraint Programming, pages 355–369, London, UK, 1998.
Springer-Verlag.

23. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

24. S. W. Smith and E. H. Spafford. Grand challenges in information security: Process and output. IEEE
Security and Privacy, pages 69–71, Jan 2004.

25. TRUSTe.org. An independent, nonprofit enabling trust based on privacy for personal information on
the internet. Available at http://www.truste.org/.

26. M. C. Tschantz and S. Krishnamurthi. Towards reasonability properties for access-control policy lan-
guages with extended xacml analysis. Tech Report CS-06-04, CS, Brown University. Available at
http://www.cs.brown.edu/publications/techreports/reports/CS-06-04.html.

27. United State Department of Health. Health insurance portability and accountability act of 1996.
Available at http://www.hhs.gov/ocr/hipaa/.

28. U.S. Senate Committee on Banking, Housing, and Urban Affairs. Information regarding the gramm-
leach-bliley act of 1999. Available at http://banking.senate.gov/conf/.

29. W3C. Platform for privacy preferences (p3p) project. Available at http://www.w3.org/P3P.

